
Software Requirements Specification for Projectile

Samuel J. Crawford, Brooks MacLachlan, and W. Spencer Smith

May 23, 2022

Contents
1 Reference Material 2

1.1 Table of Units . 2
1.2 Table of Symbols . 2
1.3 Abbreviations and Acronyms . 3

2 Introduction 4
2.1 Scope of Requirements . 4

3 Specific System Description 4
3.1 Problem Description . 4

3.1.1 Terminology and Definitions . 4
3.1.2 Physical System Description . 5
3.1.3 Goal Statements . 5

3.2 Solution Characteristics Specification . 5
3.2.1 Assumptions . 6
3.2.2 Theoretical Models . 7
3.2.3 General Definitions . 8
3.2.4 Data Definitions . 14
3.2.5 Instance Models . 17
3.2.6 Data Constraints . 24
3.2.7 Properties of a Correct Solution . 24

4 Requirements 24
4.1 Functional Requirements . 24
4.2 Non-Functional Requirements . 25

5 Traceability Matrices and Graphs 25

6 Values of Auxiliary Constants 29

7 References 29

1

1 Reference Material
This section records information for easy reference.

1.1 Table of Units
The unit system used throughout is SI (Système International d’Unités). In addition to the
basic units, several derived units are also used. For each unit, the Table of Units lists the
symbol, a description and the SI name.

Symbol Description SI Name
m length metre
rad angle radian
s time second

Table 1: Table of Units

1.2 Table of Symbols
The symbols used in this document are summarized in the Table of Symbols along with
their units. Throughout the document, symbols in bold will represent vectors, and scalars
otherwise. The symbols are listed in alphabetical order. For vector quantities, the units
shown are for each component of the vector.

Symbol Description Units

𝑎 Scalar acceleration m
s2

𝑎𝑐 Constant acceleration m
s2

𝑎x 𝑥-component of acceleration m
s2

𝑎x
c 𝑥-component of constant acceleration m

s2

𝑎y 𝑦-component of acceleration m
s2

𝑎y
c 𝑦-component of constant acceleration m

s2

𝐚 Acceleration m
s2

𝐚c Constant acceleration vector m
s2

𝑑offset Distance between the target position and the landing position m
𝐠 Gravitational acceleration m

s2

𝑝 Scalar position m
𝑝i Initial position m
𝑝land Landing position m
𝑝target Target position m

2

Symbol Description Units

𝑝x 𝑥-component of position m
𝑝x

i 𝑥-component of initial position m
𝑝y 𝑦-component of position m
𝑝y

i 𝑦-component of initial position m
𝐩 Position m
𝑠 Output message as a string –
𝑡 Time s
𝑡flight Flight duration s
𝑣 Speed m

s

𝑣i Initial speed m
s

𝑣launch Launch speed m
s

𝑣x 𝑥-component of velocity m
s

𝑣x
i 𝑥-component of initial velocity m

s
𝑣y 𝑦-component of velocity m

s

𝑣y
i 𝑦-component of initial velocity m

s

𝐯 Velocity m
s

𝐯(𝑡) 1D speed m
s

𝐯i Initial velocity m
s

𝜀 Hit tolerance –
𝜃 Launch angle rad
𝜋 Ratio of circumference to diameter for any circle –

Table 2: Table of Symbols

1.3 Abbreviations and Acronyms

Abbreviation Full Form
1D One-Dimensional
2D Two-Dimensional
A Assumption
DD Data Definition
GD General Definition
GS Goal Statement
IM Instance Model

3

Abbreviation Full Form
PS Physical System Description
R Requirement
SRS Software Requirements Specification
TM Theoretical Model
Uncert. Typical Uncertainty

Table 3: Abbreviations and Acronyms

2 Introduction
Projectile motion is a common problem in physics. Therefore, it is useful to have a program to
solve and model these types of problems. The program documented here is called Projectile.

The following section provides an overview of the Software Requirements Specification
(SRS) for Projectile. This section explains the purpose of this document, the scope of
the requirements, the characteristics of the intended reader, and the organization of the
document.

2.1 Scope of Requirements
The scope of the requirements includes the analysis of a two-dimensional (2D) projectile
motion problem with constant acceleration.

3 Specific System Description
This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, and definitions that are used.

3.1 Problem Description
A system is needed to efficiently and correctly predict the landing position of a projectile.

3.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements.

• Launcher: Where the projectile is launched from and the device that does the launch-
ing.

4

Figure 1: The physical system

• Projectile: The object to be launched at the target.

• Target: Where the projectile should be launched to.

• Gravity: The force that attracts one physical body with mass to another.

• Cartesian coordinate system: A coordinate system that specifies each point uniquely
in a plane by a set of numerical coordinates, which are the signed distances to the
point from two fixed perpendicular oriented lines, measured in the same unit of length
(from [2]).

• Rectilinear: Occuring in one dimension.

3.1.2 Physical System Description

The physical system of Projectile, as shown in Fig:Launch, includes the following elements:

PS1: The launcher.

PS2: The projectile (with initial velocity 𝐯i and launch angle 𝜃).

PS3: The target.

3.1.3 Goal Statements

Given the initial velocity vector of the projectile, the goal statements are:

targetHit: Determine if the projectile hits the target.

3.2 Solution Characteristics Specification
The instance models that govern Projectile are presented in the Instance Model Section.
The information to understand the meaning of the instance models and their derivation is
also presented, so that the instance models can be verified.

5

3.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical models
by filling in the missing information for the physical system. The assumptions refine the
scope by providing more detail.

twoDMotion: The projectile motion is two-dimensional (2D). (RefBy: GD:velVec and GD:posVec.)

cartSyst: A Cartesian coordinate system is used (from A:neglectCurv). (RefBy: GD:velVec and
GD:posVec.)

yAxisGravity: The direction of the 𝑦-axis is directed opposite to gravity. (RefBy: IM:calOfLand-
ingDist, IM:calOfLandingTime, and A:accelYGravity.)

launchOrigin: The launcher is coincident with the origin. (RefBy: IM:calOfLandingDist and IM:calOfLand-
ingTime.)

targetXAxis: The target lies on the 𝑥-axis (from A:neglectCurv). (RefBy: IM:calOfLandingTime.)

posXDirection: The positive 𝑥-direction is from the launcher to the target. (RefBy: IM:offsetIM,
IM:messageIM, IM:calOfLandingDist, and IM:calOfLandingTime.)

constAccel: The acceleration is constant (from A:accelXZero, A:accelYGravity, A:neglectDrag, and
A:freeFlight). (RefBy: GD:velVec and GD:posVec.)

accelXZero: The acceleration in the 𝑥-direction is zero. (RefBy: IM:calOfLandingDist and A:con-
stAccel.)

accelYGravity: The acceleration in the 𝑦-direction is the acceleration due to gravity (from A:yAxis-
Gravity). (RefBy: IM:calOfLandingTime and A:constAccel.)

neglectDrag: Air drag is neglected. (RefBy: A:constAccel.)

pointMass: The size and shape of the projectile are negligible, so that it can be modelled as a
point mass. (RefBy: GD:rectPos and GD:rectVel.)

freeFlight: The flight is free; there are no collisions during the trajectory of the projectile. (RefBy:
A:constAccel.)

neglectCurv: The distance is small enough that the curvature of the Earth can be neglected. (RefBy:
A:targetXAxis and A:cartSyst.)

timeStartZero: Time starts at zero. (RefBy: GD:velVec, GD:rectPos, GD:rectVel, GD:posVec, and
IM:calOfLandingTime.)

gravAccelValue: The acceleration due to gravity is assumed to have the value provided in the section
for Values of Auxiliary Constants. (RefBy: IM:calOfLandingDist and IM:calOfLand-
ingTime.)

6

3.2.2 Theoretical Models

This section focuses on the general equations and laws that Projectile is based on.

Refname TM:acceleration

Label Acceleration

Equation
𝐚 = 𝑑𝐯

𝑑𝑡

Description
𝐚 is the acceleration (m

s2)
𝑡 is the time (s)
𝐯 is the velocity (m

s)

Source [1]

RefBy GD:rectVel

7

Refname TM:velocity

Label Velocity

Equation
𝐯 = 𝑑𝐩

𝑑𝑡

Description
𝐯 is the velocity (m

s)
𝑡 is the time (s)
𝐩 is the position (m)

Source [3]

RefBy GD:rectPos

3.2.3 General Definitions

This section collects the laws and equations that will be used to build the instance models.

8

Refname GD:rectVel

Label Rectilinear (1D) velocity as a function of time for constant acceleration

Units m
s

Equation
𝐯(𝑡) = 𝑣i + 𝑎𝑐𝑡

Description
𝐯(𝑡) is the 1D speed (m

s)
𝑣i is the initial speed (m

s)
𝑎𝑐 is the constant acceleration (m

s2)
𝑡 is the time (s)

Source [4, (pg. 8)]

RefBy GD:velVec and GD:rectPos

Detailed derivation of rectilinear velocity: Assume we have rectilinear motion of a
particle (of negligible size and shape, from A:pointMass); that is, motion in a straight line.
The velocity is 𝑣 and the acceleration is 𝑎. The motion in TM:acceleration is now one-
dimensional with a constant acceleration, represented by 𝑎𝑐. The initial velocity (at 𝑡 = 0,
from A:timeStartZero) is represented by 𝑣i. From TM:acceleration, using the above symbols
we have:

𝑎𝑐 = 𝑑𝑣
𝑑𝑡

Rearranging and integrating, we have:

∫
𝑣

𝑣i

1 𝑑𝑣 = ∫
𝑡

0
𝑎𝑐 𝑑𝑡

Performing the integration, we have the required equation:

9

𝐯(𝑡) = 𝑣i + 𝑎𝑐𝑡

Refname GD:rectPos

Label Rectilinear (1D) position as a function of time for constant acceleration

Units m

Equation
𝑝 = 𝑝i + 𝑣i𝑡 + 𝑎𝑐𝑡2

2

Description
𝑝 is the scalar position (m)
𝑝i is the initial position (m)
𝑣i is the initial speed (m

s)
𝑡 is the time (s)
𝑎𝑐 is the constant acceleration (m

s2)

Source [4, (pg. 8)]

RefBy GD:posVec

Detailed derivation of rectilinear position: Assume we have rectilinear motion of a
particle (of negligible size and shape, from A:pointMass); that is, motion in a straight line.
The position is 𝑝 and the velocity is 𝑣. The motion in TM:velocity is now one-dimensional.
The initial position (at 𝑡 = 0, from A:timeStartZero) is represented by 𝑝i. From TM:velocity,
using the above symbols we have:

𝑣 = 𝑑𝑝
𝑑𝑡

Rearranging and integrating, we have:

10

∫
𝑝

𝑝i

1 𝑑𝑝 = ∫
𝑡

0
𝑣 𝑑𝑡

From GD:rectVel, we can replace 𝑣:

∫
𝑝

𝑝i

1 𝑑𝑝 = ∫
𝑡

0
𝑣i + 𝑎𝑐𝑡 𝑑𝑡

Performing the integration, we have the required equation:

𝑝 = 𝑝i + 𝑣i𝑡 + 𝑎𝑐𝑡2

2

Refname GD:velVec

Label Velocity vector as a function of time for 2D motion under constant
acceleration

Units m
s

Equation
𝐯 = [𝑣x

i + 𝑎x
c𝑡

𝑣y
i + 𝑎y

c𝑡]

Description
𝐯 is the velocity (m

s)
𝑣x

i is the 𝑥-component of initial velocity (m
s)

𝑎x
c is the 𝑥-component of constant acceleration (m

s2)
𝑡 is the time (s)
𝑣y

i is the 𝑦-component of initial velocity (m
s)

𝑎y
c is the 𝑦-component of constant acceleration (m

s2)

Source –

RefBy

11

Detailed derivation of velocity vector: For a two-dimensional Cartesian coordinate

system (A:twoDMotion and A:cartSyst), we can represent the velocity vector as 𝐯 = [𝑣x
𝑣y

]

and the acceleration vector as 𝐚 = [𝑎x
𝑎y

]. The acceleration is assumed to be constant (A:con-

stAccel) and the constant acceleration vector is represented as 𝐚c = [𝑎x
c

𝑎y
c]. The initial

velocity (at 𝑡 = 0, from A:timeStartZero) is represented by 𝐯i = [𝑣x
i

𝑣y
i]. Since we have a

Cartesian coordinate system, GD:rectVel can be applied to each coordinate of the velocity
vector to yield the required equation:

𝐯 = [𝑣x
i + 𝑎x

c𝑡
𝑣y

i + 𝑎y
c𝑡]

12

Refname GD:posVec

Label Position vector as a function of time for 2D motion under constant
acceleration

Units m

Equation

𝐩 = [𝑝x
i + 𝑣x

i𝑡 + 𝑎x
c𝑡2

2
𝑝y

i + 𝑣y
i𝑡 + 𝑎y

c𝑡2

2

]

Description
𝐩 is the position (m)
𝑝x

i is the 𝑥-component of initial position (m)
𝑣x

i is the 𝑥-component of initial velocity (m
s)

𝑡 is the time (s)
𝑎x

c is the 𝑥-component of constant acceleration (m
s2)

𝑝y
i is the 𝑦-component of initial position (m)

𝑣y
i is the 𝑦-component of initial velocity (m

s)
𝑎y

c is the 𝑦-component of constant acceleration (m
s2)

Source –

RefBy IM:calOfLandingDist and IM:calOfLandingTime

Detailed derivation of position vector: For a two-dimensional Cartesian coordinate

system (A:twoDMotion and A:cartSyst), we can represent the position vector as 𝐩 = [𝑝x
𝑝y

],

the velocity vector as 𝐯 = [𝑣x
𝑣y

], and the acceleration vector as 𝐚 = [𝑎x
𝑎y

]. The acceleration

is assumed to be constant (A:constAccel) and the constant acceleration vector is represented

as 𝐚c = [𝑎x
c

𝑎y
c]. The initial velocity (at 𝑡 = 0, from A:timeStartZero) is represented by

13

𝐯i = [𝑣x
i

𝑣y
i]. Since we have a Cartesian coordinate system, GD:rectPos can be applied to

each coordinate of the position vector to yield the required equation:

𝐩 = [𝑝x
i + 𝑣x

i𝑡 + 𝑎x
c𝑡2

2
𝑝y

i + 𝑣y
i𝑡 + 𝑎y

c𝑡2

2

]

3.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models.

14

Refname DD:vecMag

Label Speed

Symbol 𝑣

Units m
s

Equation
𝑣 = ‖𝐯‖

Description
𝑣 is the speed (m

s)
𝐯 is the velocity (m

s)

Notes For a given velocity vector 𝐯, the magnitude of the vector (‖𝐯‖) is the
scalar called speed.

Source –

RefBy DD:speedIY and DD:speedIX

15

Refname DD:speedIX

Label 𝑥-component of initial velocity

Symbol 𝑣x
i

Units m
s

Equation
𝑣x

i = 𝑣i cos (𝜃)

Description
𝑣x

i is the 𝑥-component of initial velocity (m
s)

𝑣i is the initial speed (m
s)

𝜃 is the launch angle (rad)

Notes 𝑣i is from DD:vecMag.
𝜃 is shown in Fig:Launch.

Source –

RefBy IM:calOfLandingDist

16

Refname DD:speedIY

Label 𝑦-component of initial velocity

Symbol 𝑣y
i

Units m
s

Equation
𝑣y

i = 𝑣i sin (𝜃)

Description
𝑣y

i is the 𝑦-component of initial velocity (m
s)

𝑣i is the initial speed (m
s)

𝜃 is the launch angle (rad)

Notes 𝑣i is from DD:vecMag.
𝜃 is shown in Fig:Launch.

Source –

RefBy IM:calOfLandingTime

3.2.5 Instance Models

This section transforms the problem defined in the problem description into one which is
expressed in mathematical terms. It uses concrete symbols defined in the data definitions
to replace the abstract symbols in the models identified in theoretical models and general
definitions.

17

Refname IM:calOfLandingTime

Label Calculation of landing time

Input 𝑣launch, 𝜃

Output 𝑡flight

Input
Constraints 𝑣launch > 0

0 < 𝜃 < 𝜋
2

Output
Constraints 𝑡flight > 0

Equation
𝑡flight = 2𝑣launch sin (𝜃)

𝐠

Description
𝑡flight is the flight duration (s)
𝑣launch is the launch speed (m

s)
𝜃 is the launch angle (rad)
𝐠 is the gravitational acceleration (m

s2)

Notes The constraint 0 < 𝜃 < 𝜋
2 is from A:posXDirection and A:yAxisGravity,

and is shown in Fig:Launch.
𝐠 is defined in A:gravAccelValue.
The constraint 𝑡flight > 0 is from A:timeStartZero.

Source –

RefBy IM:calOfLandingDist and FR:Calculate-Values

18

Detailed derivation of flight duration: We know that 𝑝y
i = 0 (A:launchOrigin) and

𝑎y
c = −𝐠 (A:accelYGravity). Substituting these values into the y-direction of GD:posVec

gives us:

𝑝y = 𝑣y
i𝑡 − 𝐠𝑡2

2
To find the time that the projectile lands, we want to find the 𝑡 value (𝑡flight) where 𝑝y = 0
(since the target is on the 𝑥-axis from A:targetXAxis). From the equation above we get:

𝑣y
i𝑡flight −

𝐠𝑡flight
2

2
= 0

Dividing by 𝑡flight (with the constraint 𝑡flight > 0) gives us:

𝑣y
i −

𝐠𝑡flight

2
= 0

Solving for 𝑡flight gives us:

𝑡flight =
2𝑣y

i

𝐠
From DD:speedIY (with 𝑣i = 𝑣launch) we can replace 𝑣y

i:

𝑡flight = 2𝑣launch sin (𝜃)
𝐠

19

Refname IM:calOfLandingDist

Label Calculation of landing position

Input 𝑣launch, 𝜃

Output 𝑝land

Input
Constraints 𝑣launch > 0

0 < 𝜃 < 𝜋
2

Output
Constraints 𝑝land > 0

Equation
𝑝land = 2𝑣launch

2 sin (𝜃) cos (𝜃)
𝐠

Description
𝑝land is the landing position (m)
𝑣launch is the launch speed (m

s)
𝜃 is the launch angle (rad)
𝐠 is the gravitational acceleration (m

s2)

Notes The constraint 0 < 𝜃 < 𝜋
2 is from A:posXDirection and A:yAxisGravity,

and is shown in Fig:Launch.
𝐠 is defined in A:gravAccelValue.
The constraint 𝑝land > 0 is from A:posXDirection.

Source –

RefBy IM:offsetIM and FR:Calculate-Values

20

Detailed derivation of landing position: We know that 𝑝x
i = 0 (A:launchOrigin) and

𝑎x
c = 0 (A:accelXZero). Substituting these values into the x-direction of GD:posVec gives

us:

𝑝x = 𝑣x
i𝑡

To find the landing position, we want to find the 𝑝x value (𝑝land) at flight duration (from
IM:calOfLandingTime):

𝑝land = 𝑣x
i ⋅ 2𝑣launch sin (𝜃)

𝐠
From DD:speedIX (with 𝑣i = 𝑣launch) we can replace 𝑣x

i:

𝑝land = 𝑣launch cos (𝜃) ⋅ 2𝑣launch sin (𝜃)
𝐠

Rearranging this gives us the required equation:

𝑝land = 2𝑣launch
2 sin (𝜃) cos (𝜃)

𝐠

21

Refname IM:offsetIM

Label Offset

Input 𝑝land, 𝑝target

Output 𝑑offset

Input
Constraints 𝑝land > 0

𝑝target > 0

Output
Constraints

Equation
𝑑offset = 𝑝land − 𝑝target

Description
𝑑offset is the distance between the target position and the landing position

(m)
𝑝land is the landing position (m)
𝑝target is the target position (m)

Notes 𝑝land is from IM:calOfLandingDist.
The constraints 𝑝land > 0 and 𝑝target > 0 are from A:posXDirection.

Source –

RefBy FR:Output-Values, IM:messageIM, and FR:Calculate-Values

22

Refname IM:messageIM

Label Output message

Input 𝑑offset, 𝑝target

Output 𝑠

Input
Constraints 𝑑offset > − 𝑝land

𝑝target > 0

Output
Constraints

Equation

𝑠 =
⎧{
⎨{⎩

“The target was hit.”, | 𝑑offset
𝑝target

| < 𝜀
“The projectile fell short.”, 𝑑offset < 0
“The projectile went long.”, 𝑑offset > 0

Description
𝑠 is the output message as a string (Unitless)
𝑑offset is the distance between the target position and the landing position

(m)
𝑝target is the target position (m)
𝜀 is the hit tolerance (Unitless)

Notes 𝑑offset is from IM:offsetIM.
The constraint 𝑝target > 0 is from A:posXDirection.
The constraint 𝑑offset > − 𝑝land is from the fact that 𝑝land > 0, from
A:posXDirection.
𝜀 is defined in Sec:Values of Auxiliary Constants.

Source –

RefBy FR:Output-Values and FR:Calculate-Values

23

3.2.6 Data Constraints

The Data Constraints Table shows the data constraints on the input variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable. The uncertainty column provides an estimate of the confidence with which
the physical quantities can be measured. This information would be part of the input if one
were performing an uncertainty quantification exercise. The constraints are conservative, to
give the user of the model the flexibility to experiment with unusual situations. The column
of typical values is intended to provide a feel for a common scenario.

Var Physical Constraints Typical Value Uncert.
𝑝target 𝑝target > 0 1000 m 10%
𝑣launch 𝑣launch > 0 100 m

s 10%
𝜃 0 < 𝜃 < 𝜋

2
𝜋
4 rad 10%

Table 4: Input Data Constraints

3.2.7 Properties of a Correct Solution

The Data Constraints Table shows the data constraints on the output variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable.

Var Physical Constraints
𝑝land 𝑝land > 0
𝑑offset 𝑑offset > − 𝑝land

Table 5: Output Data Constraints

4 Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete, and the non-functional requirements, the qualities that the software
is expected to exhibit.

4.1 Functional Requirements
This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete.

Input-Values: Input the values from Tab:ReqInputs.

24

Verify-Input-Values: Check the entered input values to ensure that they do not exceed the data constraints.
If any of the input values are out of bounds, an error message is displayed and the
calculations stop.

Calculate-Values: Calculate the following values: 𝑡flight (from IM:calOfLandingTime), 𝑝land (from IM:calOfLand-
ingDist), 𝑑offset (from IM:offsetIM), and 𝑠 (from IM:messageIM).

Output-Values: Output 𝑠 (from IM:messageIM) and 𝑑offset (from IM:offsetIM).

Symbol Description Units
𝑝target Target position m
𝑣launch Launch speed m

s
𝜃 Launch angle rad

Table 6: Required Inputs following FR:Input-Values

4.2 Non-Functional Requirements
This section provides the non-functional requirements, the qualities that the software is
expected to exhibit.

Correct: The outputs of the code have the properties described in Properties of a Correct
Solution.

Verifiable: The code is tested with complete verification and validation plan.

Understandable: The code is modularized with complete module guide and module interface specifica-
tion.

Reusable: The code is modularized.

Maintainable: The traceability between requirements, assumptions, theoretical models, general defini-
tions, data definitions, instance models, likely changes, unlikely changes, and modules
is completely recorded in traceability matrices in the SRS and module guide.

Portable: The code is able to be run in different environments.

5 Traceability Matrices and Graphs
The purpose of the traceability matrices is to provide easy references on what has to be ad-
ditionally modified if a certain component is changed. Every time a component is changed,
the items in the column of that component that are marked with an “X” should be modified
as well. Tab:TraceMatAvsA shows the dependencies of assumptions on the assumptions.

25

Tab:TraceMatAvsAll shows the dependencies of data definitions, theoretical models, gen-
eral definitions, instance models, requirements, likely changes, and unlikely changes on the
assumptions. Tab:TraceMatRefvsRef shows the dependencies of data definitions, theoreti-
cal models, general definitions, and instance models with each other. Tab:TraceMatAllvsR
shows the dependencies of requirements, goal statements on the data definitions, theoretical
models, general definitions, and instance models.

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:targetXAxis A:posXDirection A:constAccel A:accelXZero A:accelYGravity A:neglectDrag A:pointMass A:freeFlight A:neglectCurv A:timeStartZero A:gravAccelValue
A:twoDMotion
A:cartSyst X
A:yAxisGravity
A:launchOrigin
A:targetXAxis X
A:posXDirection
A:constAccel X X X X
A:accelXZero
A:accelYGravity X
A:neglectDrag
A:pointMass
A:freeFlight
A:neglectCurv
A:timeStartZero
A:gravAccelValue

Table 7: Traceability Matrix Showing the Connections Between Assumptions and Other
Assumptions

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:targetXAxis A:posXDirection A:constAccel A:accelXZero A:accelYGravity A:neglectDrag A:pointMass A:freeFlight A:neglectCurv A:timeStartZero A:gravAccelValue
DD:vecMag
DD:speedIX
DD:speedIY
TM:acceleration
TM:velocity
GD:rectVel X X
GD:rectPos X X
GD:velVec X X X X
GD:posVec X X X X
IM:calOfLandingTime X X X X X X X
IM:calOfLandingDist X X X X X
IM:offsetIM X
IM:messageIM X

26

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:targetXAxis A:posXDirection A:constAccel A:accelXZero A:accelYGravity A:neglectDrag A:pointMass A:freeFlight A:neglectCurv A:timeStartZero A:gravAccelValue
FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Values
FR:Output-Values
NFR:Correct
NFR:Verifiable
NFR:Understandable
NFR:Reusable
NFR:Maintainable
NFR:Portable

Table 8: Traceability Matrix Showing the Connections Between Assumptions and Other
Items

DD:vecMag DD:speedIX DD:speedIY TM:acceleration TM:velocity GD:rectVel GD:rectPos GD:velVec GD:posVec IM:calOfLandingTime IM:calOfLandingDist IM:offsetIM IM:messageIM
DD:vecMag
DD:speedIX X
DD:speedIY X
TM:acceleration
TM:velocity
GD:rectVel X
GD:rectPos X X
GD:velVec X
GD:posVec X
IM:calOfLandingTime X X
IM:calOfLandingDist X X X
IM:offsetIM X
IM:messageIM X

Table 9: Traceability Matrix Showing the Connections Between Items and Other Sections

DD:vecMag DD:speedIX DD:speedIY TM:acceleration TM:velocity GD:rectVel GD:rectPos GD:velVec GD:posVec IM:calOfLandingTime IM:calOfLandingDist IM:offsetIM IM:messageIM FR:Input-Values FR:Verify-Input-Values FR:Calculate-Values FR:Output-Values NFR:Correct NFR:Verifiable NFR:Understandable NFR:Reusable NFR:Maintainable NFR:Portable
GS:targetHit
FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Values X X X X
FR:Output-Values X X
NFR:Correct
NFR:Verifiable

27

A:cartSyst A:neglectCurvA:targetXAxis A:constAccel A:accelXZeroA:accelYGravityA:neglectDragA:freeFlight A:yAxisGravity A:twoDMotion A:launchOrigin A:posXDirection A:pointMass A:timeStartZero A:gravAccelValue

Figure 2: TraceGraphAvsA

GD:rectVel

A:pointMass A:timeStartZero

GD:rectPos GD:velVec

A:twoDMotion A:cartSyst A:constAccel

GD:posVec IM:calOfLandingTime

A:yAxisGravity A:launchOriginA:targetXAxis A:posXDirectionA:accelYGravity A:gravAccelValue

IM:calOfLandingDist

A:accelXZero

IM:offsetIM IM:messageIM

A:neglectDrag A:freeFlight A:neglectCurv

DD:vecMag DD:speedIX DD:speedIY TM:acceleration TM:velocity FR:inputValues FR:verifyInVals FR:calcValues FR:outputValues NFR:correct NFR:verifiable NFR:understandable NFR:reusable NFR:maintainable NFR:portable

Figure 3: TraceGraphAvsAll

DD:vecMag DD:speedIX DD:speedIY TM:acceleration TM:velocity GD:rectVel GD:rectPos GD:velVec GD:posVec IM:calOfLandingTime IM:calOfLandingDist IM:offsetIM IM:messageIM FR:Input-Values FR:Verify-Input-Values FR:Calculate-Values FR:Output-Values NFR:Correct NFR:Verifiable NFR:Understandable NFR:Reusable NFR:Maintainable NFR:Portable
NFR:Understandable
NFR:Reusable
NFR:Maintainable
NFR:Portable

Table 10: Traceability Matrix Showing the Connections Between Requirements, Goal State-
ments and Other Items

The purpose of the traceability graphs is also to provide easy references on what has
to be additionally modified if a certain component is changed. The arrows in the graphs
represent dependencies. The component at the tail of an arrow is depended on by the com-
ponent at the head of that arrow. Therefore, if a component is changed, the components
that it points to should also be changed. Fig:TraceGraphAvsA shows the dependencies of
assumptions on the assumptions. Fig:TraceGraphAvsAll shows the dependencies of data defi-
nitions, theoretical models, general definitions, instance models, requirements, likely changes,
and unlikely changes on the assumptions. Fig:TraceGraphRefvsRef shows the dependencies
of data definitions, theoretical models, general definitions, and instance models with each
other. Fig:TraceGraphAllvsR shows the dependencies of requirements, goal statements on
the data definitions, theoretical models, general definitions, and instance models. Fig:Trace-
GraphAllvsAll shows the dependencies of dependencies of assumptions, models, definitions,
requirements, goals, and changes with each other.

DD:speedIX DD:vecMagDD:speedIY GD:rectVel

TM:acceleration

GD:rectPos

TM:velocity

GD:velVecGD:posVec

IM:calOfLandingTimeIM:calOfLandingDistIM:offsetIMIM:messageIM

Figure 4: TraceGraphRefvsRef

28

FR:calcValues

IM:calOfLandingTime IM:calOfLandingDist IM:offsetIM IM:messageIM

FR:outputValues A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:targetXAxis A:posXDirection A:constAccel A:accelXZero A:accelYGravity A:neglectDrag A:pointMass A:freeFlight A:neglectCurv A:timeStartZero A:gravAccelValue DD:vecMag DD:speedIX DD:speedIY TM:acceleration TM:velocity GD:rectVel GD:rectPos GD:velVec GD:posVec FR:inputValues FR:verifyInVals NFR:correct NFR:verifiable NFR:understandable NFR:reusable NFR:maintainable NFR:portable GS:targetHit

Figure 5: TraceGraphAllvsR

A:cartSyst A:neglectCurvA:targetXAxisA:constAccel A:accelXZero A:accelYGravityA:neglectDrag A:freeFlight A:yAxisGravity

DD:speedIX DD:vecMagDD:speedIYGD:rectVel

A:pointMassA:timeStartZero TM:acceleration

GD:rectPos

TM:velocity

GD:velVec

A:twoDMotion

GD:posVec

IM:calOfLandingTime

A:launchOriginA:posXDirection A:gravAccelValue

IM:calOfLandingDistIM:offsetIMIM:messageIM

FR:calcValuesFR:outputValues FR:inputValues FR:verifyInVals NFR:correct NFR:verifiable NFR:understandable NFR:reusable NFR:maintainable NFR:portable GS:targetHit

Figure 6: TraceGraphAllvsAll

For convenience, the following graphs can be found at the links below:

• TraceGraphAvsA

• TraceGraphAvsAll

• TraceGraphRefvsRef

• TraceGraphAllvsR

• TraceGraphAllvsAll

6 Values of Auxiliary Constants
This section contains the standard values that are used for calculations in Projectile.

Symbol Description Value Unit
𝐠 gravitational acceleration 9.8 m

s2

𝜀 hit tolerance 2.0% –
𝜋 ratio of circumference to diameter for any circle 3.14159265 –

Table 11: Auxiliary Constants

7 References
[1] Wikipedia Contributors. Acceleration. https://en.wikipedia.org/wiki/Acceleration.

June 2019.
[2] Wikipedia Contributors. Cartesian coordinate system. https://en.wikipedia.org/

wiki/Cartesian_coordinate_system. June 2019.
[3] Wikipedia Contributors. Velocity. https://en.wikipedia.org/wiki/Velocity. June

2019.
[4] R. C. Hibbeler. Engineering Mechanics: Dynamics. Pearson Prentice Hall, 2004.

29

../../../../traceygraphs/projectile/avsa.svg
../../../../traceygraphs/projectile/avsall.svg
../../../../traceygraphs/projectile/refvsref.svg
../../../../traceygraphs/projectile/allvsr.svg
../../../../traceygraphs/projectile/allvsall.svg
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Velocity

	Reference Material
	Table of Units
	Table of Symbols
	Abbreviations and Acronyms

	Introduction
	Scope of Requirements

	Specific System Description
	Problem Description
	Terminology and Definitions
	Physical System Description
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	Properties of a Correct Solution

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Traceability Matrices and Graphs
	Values of Auxiliary Constants
	References

