Software Requirements Specification for Projectile

Samuel J. Crawford, Brooks MacLachlan, and W. Spencer Smith
May 23, 2022

Contents

1 Reference Material
1.1 Tableof Units e
1.2 Table of Symbols
1.3 Abbreviations and Acronymso

2 Introduction
2.1 Scope of Requirements

3 Specific System Description
3.1 Problem Description
3.1.1 Terminology and Definitions
3.1.2 Physical System Description
3.1.3 Goal Statements
3.2 Solution Characteristics Specification
3.2.1 Assumptions
3.2.2 Theoretical Models o
3.2.3 General Definitions L
3.2.4 Data Definitions
3.2.5 Instance Models
3.2.6 Data Constraints
3.2.7 Properties of a Correct Solution

W N NN

=

00 ~1 O O O O > i W

4 Requirements

4.1 Functional Requirements
4.2 Non-Functional Requirements

5 Traceability Matrices and Graphs
6 Values of Auxiliary Constants

7 References

25

29

29

1 Reference Material

This section records information for easy reference.

1.1 Table of Units

The unit system used throughout is SI (Systéme International d’Unités). In addition to the
basic units, several derived units are also used. For each unit, the Table of Units lists the
symbol, a description and the SI name.

Symbol Description SI Name

m length metre
rad angle radian
s time second

Table 1: Table of Units

1.2 Table of Symbols

The symbols used in this document are summarized in the Table of Symbols along with
their units. Throughout the document, symbols in bold will represent vectors, and scalars
otherwise. The symbols are listed in alphabetical order. For vector quantities, the units
shown are for each component of the vector.

a
=
=
0

Symbol Description

a Scalar acceleration =
a‘ Constant acceleration =z
ay x-component of acceleration =z
a,© x-component of constant acceleration =z
a, y-component of acceleration =
ayc y-component of constant acceleration S%
a Acceleration 5
a“ Constant acceleration vector =z
d o st Distance between the target position and the landing position m
g Gravitational acceleration =z
P Scalar position m
p! Initial position m
Dland Landing position m
Drarget Target position m

Symbol Description Units
Dy x-component of position m
Pl x-component of initial position m
Dy y-component of position m
pyi y-component of initial position m
P Position m
S Output message as a string -
t Time s
L fight Flight duration S
v Speed 5
V! Initial speed o
Vlaunch Launch speed -
Uy x-component of velocity o
vt x-component of initial velocity o
vy y-component of velocity 5
vyi y-component of initial velocity 5
v Velocity 5
v(t) 1D speed o
vi Initial velocity o
€ Hit tolerance -
0 Launch angle rad
0 Ratio of circumference to diameter for any circle -

Table 2: Table of Symbols

1.3 Abbreviations and Acronyms

Abbreviation Full Form

1D
2D
A
DD
GD
GS
IM

One-Dimensional
Two-Dimensional
Assumption

Data Definition
General Definition
Goal Statement
Instance Model

Abbreviation Full Form

PS Physical System Description

R Requirement

SRS Software Requirements Specification
™ Theoretical Model

Uncert. Typical Uncertainty

Table 3: Abbreviations and Acronyms

2 Introduction

Projectile motion is a common problem in physics. Therefore, it is useful to have a program to
solve and model these types of problems. The program documented here is called Projectile.

The following section provides an overview of the Software Requirements Specification
(SRS) for Projectile. This section explains the purpose of this document, the scope of
the requirements, the characteristics of the intended reader, and the organization of the
document.

2.1 Scope of Requirements

The scope of the requirements includes the analysis of a two-dimensional (2D) projectile
motion problem with constant acceleration.

3 Specific System Description

This section first presents the problem description, which gives a high-level view of the
problem to be solved. This is followed by the solution characteristics specification, which
presents the assumptions, theories, and definitions that are used.

3.1 Problem Description

A system is needed to efficiently and correctly predict the landing position of a projectile.

3.1.1 Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their
meaning, with the purpose of reducing ambiguity and making it easier to correctly under-
stand the requirements.

o Launcher: Where the projectile is launched from and the device that does the launch-
ing.

Projectile
lg

Launcher| /£ — Pioreer . _larget
X Plana
<>
doﬁ‘ser

Figure 1: The physical system

o Projectile: The object to be launched at the target.
o Target: Where the projectile should be launched to.
o Gravity: The force that attracts one physical body with mass to another.

« Cartesian coordinate system: A coordinate system that specifies each point uniquely
in a plane by a set of numerical coordinates, which are the signed distances to the
point from two fixed perpendicular oriented lines, measured in the same unit of length
(from [2]).

e Rectilinear: Occuring in one dimension.

3.1.2 Physical System Description

The physical system of Projectile, as shown in Fig:Launch, includes the following elements:
PS1: The launcher.

PS2: The projectile (with initial velocity v and launch angle).

PS3: The target.

3.1.3 Goal Statements

Given the initial velocity vector of the projectile, the goal statements are:

targetHit: Determine if the projectile hits the target.

3.2 Solution Characteristics Specification

The instance models that govern Projectile are presented in the Instance Model Section.
The information to understand the meaning of the instance models and their derivation is
also presented, so that the instance models can be verified.

3.2.1 Assumptions

This section simplifies the original problem and helps in developing the theoretical models
by filling in the missing information for the physical system. The assumptions refine the
scope by providing more detail.

twoDMotion:

cartSyst:

yAxisGravity:

launchOrigin:

target X Axis:

posXDirection:

constAccel:

accelXZero:

accelY Gravity:

neglectDrag:

pointMass:

freeFlight:

neglectCurv:

timeStartZero:

gravAccel Value:

The projectile motion is two-dimensional (2D). (RefBy: GD:velVec and GD:posVec.)

A Cartesian coordinate system is used (from A:neglectCurv). (RefBy: GD:velVec and
GD:posVec.)

The direction of the y-axis is directed opposite to gravity. (RefBy: IM:calOfLand-
ingDist, IM:calOfLandingTime, and A:accelY Gravity.)

The launcher is coincident with the origin. (RefBy: IM:calOfLandingDist and IM:calOfLand-

ingTime.)
The target lies on the z-axis (from A:neglectCurv). (RefBy: IM:calOfLandingTime.)

The positive x-direction is from the launcher to the target. (RefBy: IM:offsetIM,
IM:messagelM, IM:calOfLandingDist, and IM:calOfLandingTime.)

The acceleration is constant (from A:accelXZero, A:accelY Gravity, A:neglectDrag, and
A:freeFlight). (RefBy: GD:velVec and GD:posVec.)

The acceleration in the z-direction is zero. (RefBy: IM:calOfLandingDist and A:con-
stAccel.)

The acceleration in the y-direction is the acceleration due to gravity (from A:yAxis-
Gravity). (RefBy: IM:calOfLandingTime and A:constAccel.)

Air drag is neglected. (RefBy: A:constAccel.)

The size and shape of the projectile are negligible, so that it can be modelled as a
point mass. (RefBy: GD:rectPos and GD:rectVel.)

The flight is free; there are no collisions during the trajectory of the projectile. (RefBy:
A:constAccel.)

The distance is small enough that the curvature of the Earth can be neglected. (RefBy:
A:target X Axis and A:cartSyst.)

Time starts at zero. (RefBy: GD:velVec, GD:rectPos, GD:rectVel, GD:posVec, and
IM:calOfLandingTime.)

The acceleration due to gravity is assumed to have the value provided in the section
for Values of Auxiliary Constants. (RefBy: IM:calOfLandingDist and IM:calOfLand-
ingTime.)

3.2.2 Theoretical Models

This section focuses on the general equations and laws that Projectile is based on.

Refname TM:acceleration

Label Acceleration
Equation
a dv
a=—
dt
Description

a is the acceleration (33)
t is the time (s)
v is the velocity (%)

Source 1]

RefBy GD:rectVel

Refname TM:velocity

Label Velocity
Equation
q B dp
dt
Description

v is the velocity (2)
t is the time (s)
p is the position (m)

Source 3]

RefBy GD:rectPos

3.2.3 General Definitions

This section collects the laws and equations that will be used to build the instance models.

Refname GD:rect Vel

Label Rectilinear (1D) velocity as a function of time for constant acceleration
Units =

S
Equation

v(t) = vl + a‘t

Description
P v(t) is the 1D speed (%)
v' is the initial speed (%)
a® is the constant acceleration (33)
t is the time (s)
Source [4, (pg. 8)]
RefBy GD:velVec and GD:rectPos

Detailed derivation of rectilinear velocity: Assume we have rectilinear motion of a
particle (of negligible size and shape, from A:pointMass); that is, motion in a straight line.
The velocity is v and the acceleration is a. The motion in TM:acceleration is now one-
dimensional with a constant acceleration, represented by a®. The initial velocity (at ¢ = 0,
from A:timeStartZero) is represented by v'. From TM:acceleration, using the above symbols
we have:

_dv
S dt

aC

Rearranging and integrating, we have:

v t
/ 1dv:/acdt
i 0

v

Performing the integration, we have the required equation:

v(t) =v' + at

Refname GD:rectPos

Label Rectilinear (1D) position as a function of time for constant acceleration
Units m
Equation
)] ct2
p=p +vt+
2
Description

p is the scalar position (m)

p! is the initial position (m)

v' is the initial speed ()

t is the time (s)

a® is the constant acceleration ()

Source 4, (pg. 8)]

RefBy GD:posVec

Detailed derivation of rectilinear position: Assume we have rectilinear motion of a
particle (of negligible size and shape, from A:pointMass); that is, motion in a straight line.
The position is p and the velocity is v. The motion in TM:velocity is now one-dimensional.
The initial position (at t = 0, from A:timeStartZero) is represented by p'. From TM:velocity,
using the above symbols we have:

_ b

VT

Rearranging and integrating, we have:

10

D t
/ ldp:/ vdt
i 0

P
From GD:rectVel, we can replace v:

P t
/ 1dp:/ v+ atdt
i 0

P
Performing the integration, we have the required equation:

Ct2

2

. . a
p=p +vt+

Refname GD:velVec

Label Velocity vector as a function of time for 2D motion under constant
acceleration

Units g
S

Equation

v — {vxi + axct}
Uy‘ + ayct

Description))
v is the velocity (%)
v, is the z-component of initial velocity (%)
a,© is the z-component of constant acceleration (S%)
t is the time (s)
vy' is the y-component of initial velocity ()
ayc is the y-component of constant acceleration (S%)
Source -
RefBy

11

Detailed derivation of velocity vector: For a two-dimensional Cartesian coordinate

system (A:twoDMotion and A:cartSyst), we can represent the velocity vector as v = {Zx}
y

X

. a L
and the acceleration vector as a = {a } . The acceleration is assumed to be constant (A:con-

y
C
stAccel) and the constant acceleration vector is represented as a® = {ZXC} The initial
y
i
velocity (at t = 0, from A:timeStartZero) is represented by v = in . Since we have a

y
Cartesian coordinate system, GD:rectVel can be applied to each coordinate of the velocity
vector to yield the required equation:

_ ol tact
V= L}yl +a,’t

12

Refname GD:posVec

Label Position vector as a function of time for 2D motion under constant
acceleration
Units m
Equation
. . a ct2
p pxl + vxlt + x2
= .) cp2
py' oyt + ay2t
Description

p is the position (m)

p,! is the z-component of initial position (m)
v, is the z-component of initial velocity ()
t is the time (s)

a,® is the xz-component of constant acceleration (3)
pyi is the y-component of initial position (m)

w

vyi is the y-component of initial velocity (%)

a,® is the y-component of constant acceleration (z)

w

Source —

RefBy IM:calOfLandingDist and IM:calOfLandingTime

Detailed derivation of position vector: For a two-dimensional Cartesian coordinate

system (A:twoDMotion and A:cartSyst), we can represent the position vector as p = [X],
y

. V. . a .
the velocity vector as v = L}X , and the acceleration vector as a = le]. The acceleration
y
is assumed to be constant (A:constAccel) and the constant acceleration vector is represented
C

as a® = {ZX } The initial velocity (at t = 0, from A:timeStartZero) is represented by

c
Yy

13

. v ! .) . .
v = Uxi . Since we have a Cartesian coordinate system, GD:rectPos can be applied to

y
each coordinate of the position vector to yield the required equation:

a, °t?

== le + let + X%tQ
Pyt oyt

3.2.4 Data Definitions

This section collects and defines all the data needed to build the instance models.

14

Refname DD:vecMag

Label Speed
Symbol v
Units 5
Equation
v=|vl

Description .

v is the speed (%)

v is the velocity (%)
Notes For a given velocity vector v, the magnitude of the vector (||v]|) is the

scalar called speed.

Source -

RefBy DD:speedlY and DD:speedIX

15

Refname DD:speedIX

Label x-component of initial velocity
Symbol v !

Units 5

Equation

v = vl cos ()

Description ,
v,' is the z-component of initial velocity (%)
v' is the initial speed (2)
0 is the launch angle (rad)
Notes v! is from DD:vecMag.
0 is shown in Fig:Launch.
Source —
RefBy IM:calOfLandingDist

16

Refname DD:speedlY

Label y-component of initial velocity
Symbol vyi
Units 5
Equation A ‘
v, = v'sin (0)
Description

vyi is the y-component of initial velocity (73)

v' is the initial speed ()
0 is the launch angle (rad)

Notes v' is from DD:vecMag.
0 is shown in Fig:Launch.

Source —

RefBy IM:calOfLandingTime

3.2.5 Instance Models

This section transforms the problem defined in the problem description into one which is
expressed in mathematical terms. It uses concrete symbols defined in the data definitions
to replace the abstract symbols in the models identified in theoretical models and general
definitions.

17

Refname IM:calOfLandingTime
Label Calculation of landing time
Input Vyaunch» 0
Output thight
Input
Constraints Vlaunch > 0
T
0<0< <
2
Output
Constraints Lgight > 0
Equation '
t _ 2Ulaunch S (9)
flight — g
Description i . .
taigne is the flight duration (s)
Vlauneh 18 the launch speed (%)
0 is the launch angle (rad)
g is the gravitational acceleration (33)
Notes The constraint 0 < 6 < 7 is from A:posXDirection and A:yAxisGravity,
and is shown in Fig:Launch.
g is defined in A:gravAccelValue.
The constraint tg;,, > 0 is from A:timeStartZero.
Source -

18

RefBy

IM:calOfLandingDist and FR:Calculate-Values

Detailed derivation of flight duration: We know that pyi = 0 (A:launchOrigin) and
a, = —g (A:accelYGravity). Substituting these values into the y-direction of GD:posVec
gives us:

., st

Dy = V't — T3

To find the time that the projectile lands, we want to find the ¢ value (tg;4,,) Where p, =0
(since the target is on the z-axis from A:targetXAxis). From the equation above we get:

2
i gtﬂi ht
Uy tﬂight - 2% =0

Dividing by tg;en, (With the constraint tg;,,, > 0) gives us:

i gtﬂight
oy =0

Solving for tg;,,, gives us:

i
2vy

g

From DD:speedlY (with v' = v},,,4,) We can replace v,':

tight =

2fUlaunch sin (9)

tﬂight = g

19

Refname IM:calOfLandingDist
Label Calculation of landing position
Input Vlaunch 0
OU-tPUt Pland
Input
Constraints Vlaunch > 0
7
0<0< <
2
Output
Constraints Plang > 0
Equation
2vlaunchZ sin (9) COS (9)
Prana =
g
Description] _ .
Plang 18 the landing position (m)
Vlauneh 18 the launch speed (%
0 is the launch angle (rad)
g is the gravitational acceleration ()
Notes The constraint 0 < 6 < 7 is from A:posXDirection and A:yAxisGravity,
and is shown in Fig:Launch.
g is defined in A:gravAccelValue.
The constraint p,,q > 0 is from A:posXDirection.
Source -

20

RefBy

IM:offsetIM and FR:Calculate-Values

Detailed derivation of landing position: We know that p,' = 0 (A:launchOrigin) and
a,® = 0 (A:accelXZero). Substituting these values into the x-direction of GD:posVec gives
us:

p, = vt
To find the landing position, we want to find the p, value (p,q) at flight duration (from
IM:calOfLandingTime):

Uxi) 2,Ulaunch sin (9)

g

From DD:speedIX (with v' = v},,,,) We can replace v ':

Pland =

_ Vlaunch €OS (9)) 2Ula,unch sin (0)
Piana = g

Rearranging this gives us the required equation:

2fl)launch2 sin <0> COS (0>
Pland = g

21

Refname IM:offsetIM
Label Offset
Input Prand> ptarget
Output Ay oot
Input
Constraints Plang > 0
ptarget >0
Output
Constraints
Equation
doffset = Pland — ptarget

Description .) . . o

dygeet 1S the distance between the target position and the landing position

(m)

Plang 18 the landing position (m)

Prarget 15 the target position (m)
Notes Dlang 1 from IM:calOfLandingDist.

The constraints pj,,q > 0 and py, e > 0 are from A:posXDirection.

Source -
RefBy FR:Output-Values, IM:messagelM, and FR:Calculate-Values

faYa
L4

Refname

IM:messagelM

Label Output message
Input doffset? ptarget
Output S
Input
Constraints dofiset > — Pland
ptarget > 0
Output
Constraints
Equation
“The target was hit.”, 1@ <e
target
s = 4 “The projectile fell short.”, d gt <0
“The projectile went long.”, d gt >0
Description)))
s is the output message as a string (Unitless)
d,geet 15 the distance between the target position and the landing position
(m)
Prarget 1S the target position (m)
¢ is the hit tolerance (Unitless)
Notes dogser 18 from IM:offsetIM.
The constraint py,,ge; > 0 is from A:posXDirection.
The constraint dyge; > — Plang 1 from the fact that p,,, 4 > 0, from
A:posXDirection.
¢ is defined in Sec:Values of Auxiliary Constants.
23
Source -

RefBy

FR:Output-Values and FR:Calculate-Values

3.2.6 Data Constraints

The Data Constraints Table shows the data constraints on the input variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable. The uncertainty column provides an estimate of the confidence with which
the physical quantities can be measured. This information would be part of the input if one
were performing an uncertainty quantification exercise. The constraints are conservative, to
give the user of the model the flexibility to experiment with unusual situations. The column
of typical values is intended to provide a feel for a common scenario.

Var Physical Constraints Typical Value Uncert.

ptarget ptarget >0 1000 m 10%
Ulaunch Ylaunch >0 100 % 10%
0 0<f<3 7 rad 10%

Table 4: Input Data Constraints

3.2.7 Properties of a Correct Solution

The Data Constraints Table shows the data constraints on the output variables. The column
for physical constraints gives the physical limitations on the range of values that can be taken
by the variable.

Var Physical Constraints

Pland Piana > 0
doffset doﬂset > — Pland

Table 5: Output Data Constraints

4 Requirements

This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete, and the non-functional requirements, the qualities that the software
is expected to exhibit.

4.1 Functional Requirements

This section provides the functional requirements, the tasks and behaviours that the software
is expected to complete.

Input-Values: Input the values from Tab:Reqlnputs.

24

erify-Input-Values:

Calculate-Values:

Output-Values:

4.2

Check the entered input values to ensure that they do not exceed the data constraints.
If any of the input values are out of bounds, an error message is displayed and the
calculations stop.

Calculate the following values: g,y (from IM:calOfLandingTime), pj,,q (from IM:cal OfLand-
ingDist), dygee; (from IM:offsetIM), and s (from IM:messagelM).

Output s (from IM:messagelM) and d g, (from IM:offsetIM).

Symbol Description Units

ptarget Target pOSition m
Vlaunch Launch speed o
0 Launch angle rad

Table 6: Required Inputs following FR:Input-Values

Non-Functional Requirements

This section provides the non-functional requirements, the qualities that the software is
expected to exhibit.

Correct:

Verifiable:

Understandable:

Reusable:

Maintainable:

Portable:

The outputs of the code have the properties described in Properties of a Correct
Solution.

The code is tested with complete verification and validation plan.

The code is modularized with complete module guide and module interface specifica-
tion.

The code is modularized.

The traceability between requirements, assumptions, theoretical models, general defini-
tions, data definitions, instance models, likely changes, unlikely changes, and modules
is completely recorded in traceability matrices in the SRS and module guide.

The code is able to be run in different environments.

5 Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be ad-
ditionally modified if a certain component is changed. Every time a component is changed,
the items in the column of that component that are marked with an “X” should be modified
as well. Tab:TraceMatAvsA shows the dependencies of assumptions on the assumptions.

25

Tab:TraceMatAvsAll shows the dependencies of data definitions, theoretical models, gen-
eral definitions, instance models, requirements, likely changes, and unlikely changes on the
assumptions. Tab:TraceMatRefvsRef shows the dependencies of data definitions, theoreti-
cal models, general definitions, and instance models with each other. Tab:TraceMatAllvsR
shows the dependencies of requirements, goal statements on the data definitions, theoretical
models, general definitions, and instance models.

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:target.

A:twoDMotion
A:cartSyst
A:yAxisGravity
A:launchOrigin
A:target X Axis
A:posXDirection
A:constAccel
A:accelXZero
A:accelY Gravity X
A:neglectDrag
A:pointMass
A:freeFlight
A:neglectCurv
A:timeStartZero
A:gravAccel Value

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:te

DD:vecMag

DD:speedIX

DD:speedlY
TM:acceleration
TM:velocity

GD:rect Vel

GD:rectPos

GD:velVec X
GD:posVec X
IM:calOfLandingTime
IM:calOfLandingDist
IM:offsetIM

IM:messagelM

sl

Sl
Sl

26

A:twoDMotion A:cartSyst A:yAxisGravity A:launchOrigin A:te

FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Values
FR:Output-Values
NFR:Correct
NFR:Verifiable
NFR:Understandable
NFR:Reusable
NFR:Maintainable
NFR:Portable

DD:vecMag DD:speedIX DD:speedlY TM:acceleration TM:velo

DD:vecMag
DD:speedIX
DD:speedlY
TM:acceleration
TM:velocity

GD:rect Vel
GD:rectPos
GD:velVec
GD:posVec
IM:calOfLandingTime
IM:calOfLandingDist
IM:offsetIM
IM:messagelM

X
X

Table 9: Traceability

DD:vecMag

DD:speedIX DD:speedlY TM:acceleration TM:velc

GS:targetHit
FR:Input-Values
FR:Verify-Input-Values
FR:Calculate-Values
FR:Output-Values
NFR:Correct
NFR:Verifiable

27

e | [ameoxans ol amsssacun | [aeoniscen |of s | [ancascong | [oy ol asasormiy | [assexzen | | | [Asmntonan | | | [| [aumesurizans | [aumaceenane

Figure 3: TraceGraphAvsAll

DD:vecMag DD:speedIX DD:speedlY TM:acceleration TM:velc

NFR:Understandable
NFR:Reusable
NFR:Maintainable
NFR:Portable

The purpose of the traceability graphs is also to provide easy references on what has
to be additionally modified if a certain component is changed. The arrows in the graphs
represent dependencies. The component at the tail of an arrow is depended on by the com-
ponent at the head of that arrow. Therefore, if a component is changed, the components
that it points to should also be changed. Fig:TraceGraphAvsA shows the dependencies of
assumptions on the assumptions. Fig:TraceGraphAvsAll shows the dependencies of data defi-
nitions, theoretical models, general definitions, instance models, requirements, likely changes,
and unlikely changes on the assumptions. Fig:TraceGraphRefvsRef shows the dependencies
of data definitions, theoretical models, general definitions, and instance models with each
other. Fig:TraceGraphAllvsR shows the dependencies of requirements, goal statements on
the data definitions, theoretical models, general definitions, and instance models. Fig:Trace-
GraphAllvsAll shows the dependencies of dependencies of assumptions, models, definitions,
requirements, goals, and changes with each other.

IM:messageIM H IM:offsetIM |—>| IM:calOfLandingDist |—>| IM:calOfLandingTime

N

| DD:speedIX | | GD:posVec H GD:rectPos | DD:speedlY H DD:vecMag | | GD:vel Vec |—>| GD:rectVel

Figure 4: TraceGraphRefvsRef

28

Iﬂ‘ﬂ‘-

Figure 5: TraceGraphAllvsR

wntenitte | [vreie | [“sicmananie | [Ovgonane | TGS

Figure 6: TraceGraphAllvsAll

For convenience, the following graphs can be found at the links below:
e TraceGraphAvsA

e TraceGraphAvsAll

e TraceGraphRefvsRef

o TraceGraphAllvsR

e TraceGraphAllvsAll

6 Values of Auxiliary Constants

This section contains the standard values that are used for calculations in Projectile.

Symbol Description Value Unit
g gravitational acceleration 9.8 =
€ hit tolerance 2.0% -
s ratio of circumference to diameter for any circle 3.14159265 -

Table 11: Auxiliary Constants

7 References

[1] Wikipedia Contributors. Acceleration. https://en.wikipedia.org/wiki/Acceleration.
June 2019.

2] Wikipedia Contributors. Cartesian coordinate system. https://en.wikipedia.org/
wiki/Cartesian_coordinate_system. June 2019.

[3] Wikipedia Contributors. Velocity. https://en.wikipedia.org/wiki/Velocity. June
2019.

[4] R. C. Hibbeler. Engineering Mechanics: Dynamics. Pearson Prentice Hall, 2004.
29

../../../../traceygraphs/projectile/avsa.svg
../../../../traceygraphs/projectile/avsall.svg
../../../../traceygraphs/projectile/refvsref.svg
../../../../traceygraphs/projectile/allvsr.svg
../../../../traceygraphs/projectile/allvsall.svg
https://en.wikipedia.org/wiki/Acceleration
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Cartesian_coordinate_system
https://en.wikipedia.org/wiki/Velocity

	Reference Material
	Table of Units
	Table of Symbols
	Abbreviations and Acronyms

	Introduction
	Scope of Requirements

	Specific System Description
	Problem Description
	Terminology and Definitions
	Physical System Description
	Goal Statements

	Solution Characteristics Specification
	Assumptions
	Theoretical Models
	General Definitions
	Data Definitions
	Instance Models
	Data Constraints
	Properties of a Correct Solution

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Traceability Matrices and Graphs
	Values of Auxiliary Constants
	References

