{-# LANGUAGE GADTs #-}
module Language.Drasil.Code.Expr where
import Language.Drasil
import Language.Drasil.Literal.Development
import Prelude hiding (sqrt)
import Control.Lens
import Language.Drasil.Expr.Development (Completeness(Complete, Incomplete))
data ArithBinOp = Frac | Pow | Subt
deriving ArithBinOp -> ArithBinOp -> Bool
(ArithBinOp -> ArithBinOp -> Bool)
-> (ArithBinOp -> ArithBinOp -> Bool) -> Eq ArithBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: ArithBinOp -> ArithBinOp -> Bool
$c/= :: ArithBinOp -> ArithBinOp -> Bool
== :: ArithBinOp -> ArithBinOp -> Bool
$c== :: ArithBinOp -> ArithBinOp -> Bool
Eq
data EqBinOp = Eq | NEq
deriving EqBinOp -> EqBinOp -> Bool
(EqBinOp -> EqBinOp -> Bool)
-> (EqBinOp -> EqBinOp -> Bool) -> Eq EqBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: EqBinOp -> EqBinOp -> Bool
$c/= :: EqBinOp -> EqBinOp -> Bool
== :: EqBinOp -> EqBinOp -> Bool
$c== :: EqBinOp -> EqBinOp -> Bool
Eq
data BoolBinOp = Impl | Iff
deriving BoolBinOp -> BoolBinOp -> Bool
(BoolBinOp -> BoolBinOp -> Bool)
-> (BoolBinOp -> BoolBinOp -> Bool) -> Eq BoolBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: BoolBinOp -> BoolBinOp -> Bool
$c/= :: BoolBinOp -> BoolBinOp -> Bool
== :: BoolBinOp -> BoolBinOp -> Bool
$c== :: BoolBinOp -> BoolBinOp -> Bool
Eq
data LABinOp = Index
deriving LABinOp -> LABinOp -> Bool
(LABinOp -> LABinOp -> Bool)
-> (LABinOp -> LABinOp -> Bool) -> Eq LABinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LABinOp -> LABinOp -> Bool
$c/= :: LABinOp -> LABinOp -> Bool
== :: LABinOp -> LABinOp -> Bool
$c== :: LABinOp -> LABinOp -> Bool
Eq
data OrdBinOp = Lt | Gt | LEq | GEq
deriving OrdBinOp -> OrdBinOp -> Bool
(OrdBinOp -> OrdBinOp -> Bool)
-> (OrdBinOp -> OrdBinOp -> Bool) -> Eq OrdBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: OrdBinOp -> OrdBinOp -> Bool
$c/= :: OrdBinOp -> OrdBinOp -> Bool
== :: OrdBinOp -> OrdBinOp -> Bool
$c== :: OrdBinOp -> OrdBinOp -> Bool
Eq
data VVVBinOp = Cross
deriving VVVBinOp -> VVVBinOp -> Bool
(VVVBinOp -> VVVBinOp -> Bool)
-> (VVVBinOp -> VVVBinOp -> Bool) -> Eq VVVBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVVBinOp -> VVVBinOp -> Bool
$c/= :: VVVBinOp -> VVVBinOp -> Bool
== :: VVVBinOp -> VVVBinOp -> Bool
$c== :: VVVBinOp -> VVVBinOp -> Bool
Eq
data VVNBinOp = Dot
deriving VVNBinOp -> VVNBinOp -> Bool
(VVNBinOp -> VVNBinOp -> Bool)
-> (VVNBinOp -> VVNBinOp -> Bool) -> Eq VVNBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVNBinOp -> VVNBinOp -> Bool
$c/= :: VVNBinOp -> VVNBinOp -> Bool
== :: VVNBinOp -> VVNBinOp -> Bool
$c== :: VVNBinOp -> VVNBinOp -> Bool
Eq
data AssocArithOper = AddI | AddRe | MulI | MulRe
deriving AssocArithOper -> AssocArithOper -> Bool
(AssocArithOper -> AssocArithOper -> Bool)
-> (AssocArithOper -> AssocArithOper -> Bool) -> Eq AssocArithOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocArithOper -> AssocArithOper -> Bool
$c/= :: AssocArithOper -> AssocArithOper -> Bool
== :: AssocArithOper -> AssocArithOper -> Bool
$c== :: AssocArithOper -> AssocArithOper -> Bool
Eq
data AssocBoolOper = And | Or
deriving AssocBoolOper -> AssocBoolOper -> Bool
(AssocBoolOper -> AssocBoolOper -> Bool)
-> (AssocBoolOper -> AssocBoolOper -> Bool) -> Eq AssocBoolOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocBoolOper -> AssocBoolOper -> Bool
$c/= :: AssocBoolOper -> AssocBoolOper -> Bool
== :: AssocBoolOper -> AssocBoolOper -> Bool
$c== :: AssocBoolOper -> AssocBoolOper -> Bool
Eq
data UFunc = Abs | Log | Ln | Sin | Cos | Tan | Sec | Csc | Cot | Arcsin
| Arccos | Arctan | Exp | Sqrt | Neg
deriving UFunc -> UFunc -> Bool
(UFunc -> UFunc -> Bool) -> (UFunc -> UFunc -> Bool) -> Eq UFunc
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFunc -> UFunc -> Bool
$c/= :: UFunc -> UFunc -> Bool
== :: UFunc -> UFunc -> Bool
$c== :: UFunc -> UFunc -> Bool
Eq
data UFuncB = Not
deriving UFuncB -> UFuncB -> Bool
(UFuncB -> UFuncB -> Bool)
-> (UFuncB -> UFuncB -> Bool) -> Eq UFuncB
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncB -> UFuncB -> Bool
$c/= :: UFuncB -> UFuncB -> Bool
== :: UFuncB -> UFuncB -> Bool
$c== :: UFuncB -> UFuncB -> Bool
Eq
data UFuncVV = NegV
deriving UFuncVV -> UFuncVV -> Bool
(UFuncVV -> UFuncVV -> Bool)
-> (UFuncVV -> UFuncVV -> Bool) -> Eq UFuncVV
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVV -> UFuncVV -> Bool
$c/= :: UFuncVV -> UFuncVV -> Bool
== :: UFuncVV -> UFuncVV -> Bool
$c== :: UFuncVV -> UFuncVV -> Bool
Eq
data UFuncVN = Norm | Dim
deriving UFuncVN -> UFuncVN -> Bool
(UFuncVN -> UFuncVN -> Bool)
-> (UFuncVN -> UFuncVN -> Bool) -> Eq UFuncVN
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVN -> UFuncVN -> Bool
$c/= :: UFuncVN -> UFuncVN -> Bool
== :: UFuncVN -> UFuncVN -> Bool
$c== :: UFuncVN -> UFuncVN -> Bool
Eq
data CodeExpr where
Lit :: Literal -> CodeExpr
AssocA :: AssocArithOper -> [CodeExpr] -> CodeExpr
AssocB :: AssocBoolOper -> [CodeExpr] -> CodeExpr
C :: UID -> CodeExpr
FCall :: UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
New :: UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
Message :: UID -> UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
Field :: UID -> UID -> CodeExpr
Case :: Completeness -> [(CodeExpr, CodeExpr)] -> CodeExpr
Matrix :: [[CodeExpr]] -> CodeExpr
UnaryOp :: UFunc -> CodeExpr -> CodeExpr
UnaryOpB :: UFuncB -> CodeExpr -> CodeExpr
UnaryOpVV :: UFuncVV -> CodeExpr -> CodeExpr
UnaryOpVN :: UFuncVN -> CodeExpr -> CodeExpr
ArithBinaryOp :: ArithBinOp -> CodeExpr -> CodeExpr -> CodeExpr
BoolBinaryOp :: BoolBinOp -> CodeExpr -> CodeExpr -> CodeExpr
EqBinaryOp :: EqBinOp -> CodeExpr -> CodeExpr -> CodeExpr
LABinaryOp :: LABinOp -> CodeExpr -> CodeExpr -> CodeExpr
OrdBinaryOp :: OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
VVVBinaryOp :: VVVBinOp -> CodeExpr -> CodeExpr -> CodeExpr
VVNBinaryOp :: VVNBinOp -> CodeExpr -> CodeExpr -> CodeExpr
Operator :: AssocArithOper -> DiscreteDomainDesc CodeExpr CodeExpr -> CodeExpr -> CodeExpr
RealI :: UID -> RealInterval CodeExpr CodeExpr -> CodeExpr
instance LiteralC CodeExpr where
str :: String -> CodeExpr
str = Literal -> CodeExpr
Lit (Literal -> CodeExpr) -> (String -> Literal) -> String -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Literal
forall r. LiteralC r => String -> r
str
int :: Integer -> CodeExpr
int = Literal -> CodeExpr
Lit (Literal -> CodeExpr)
-> (Integer -> Literal) -> Integer -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
int
dbl :: Double -> CodeExpr
dbl = Literal -> CodeExpr
Lit (Literal -> CodeExpr) -> (Double -> Literal) -> Double -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Literal
forall r. LiteralC r => Double -> r
dbl
exactDbl :: Integer -> CodeExpr
exactDbl = Literal -> CodeExpr
Lit (Literal -> CodeExpr)
-> (Integer -> Literal) -> Integer -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
exactDbl
perc :: Integer -> Integer -> CodeExpr
perc l :: Integer
l r :: Integer
r = Literal -> CodeExpr
Lit (Literal -> CodeExpr) -> Literal -> CodeExpr
forall a b. (a -> b) -> a -> b
$ Integer -> Integer -> Literal
forall r. LiteralC r => Integer -> Integer -> r
perc Integer
l Integer
r
instance ExprC CodeExpr where
lit :: Literal -> CodeExpr
lit = Literal -> CodeExpr
Lit
$= :: CodeExpr -> CodeExpr -> CodeExpr
($=) = EqBinOp -> CodeExpr -> CodeExpr -> CodeExpr
EqBinaryOp EqBinOp
Eq
$!= :: CodeExpr -> CodeExpr -> CodeExpr
($!=) = EqBinOp -> CodeExpr -> CodeExpr -> CodeExpr
EqBinaryOp EqBinOp
NEq
$< :: CodeExpr -> CodeExpr -> CodeExpr
($<) = OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
OrdBinaryOp OrdBinOp
Lt
$> :: CodeExpr -> CodeExpr -> CodeExpr
($>) = OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
OrdBinaryOp OrdBinOp
Gt
$<= :: CodeExpr -> CodeExpr -> CodeExpr
($<=) = OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
OrdBinaryOp OrdBinOp
LEq
$>= :: CodeExpr -> CodeExpr -> CodeExpr
($>=) = OrdBinOp -> CodeExpr -> CodeExpr -> CodeExpr
OrdBinaryOp OrdBinOp
GEq
$. :: CodeExpr -> CodeExpr -> CodeExpr
($.) = VVNBinOp -> CodeExpr -> CodeExpr -> CodeExpr
VVNBinaryOp VVNBinOp
Dot
addI :: CodeExpr -> CodeExpr -> CodeExpr
addI l :: CodeExpr
l (Lit (Int 0)) = CodeExpr
l
addI (Lit (Int 0)) r :: CodeExpr
r = CodeExpr
r
addI (AssocA AddI l :: [CodeExpr]
l) (AssocA AddI r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddI ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr]
r)
addI (AssocA AddI l :: [CodeExpr]
l) r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddI ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr
r])
addI l :: CodeExpr
l (AssocA AddI r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddI (CodeExpr
l CodeExpr -> [CodeExpr] -> [CodeExpr]
forall a. a -> [a] -> [a]
: [CodeExpr]
r)
addI l :: CodeExpr
l r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddI [CodeExpr
l, CodeExpr
r]
addRe :: CodeExpr -> CodeExpr -> CodeExpr
addRe l :: CodeExpr
l (Lit (Dbl 0))= CodeExpr
l
addRe (Lit(Dbl 0)) r :: CodeExpr
r = CodeExpr
r
addRe l :: CodeExpr
l (Lit (ExactDbl 0)) = CodeExpr
l
addRe (Lit (ExactDbl 0)) r :: CodeExpr
r = CodeExpr
r
addRe (AssocA AddRe l :: [CodeExpr]
l) (AssocA AddRe r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddRe ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr]
r)
addRe (AssocA AddRe l :: [CodeExpr]
l) r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddRe ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr
r])
addRe l :: CodeExpr
l (AssocA AddRe r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddRe (CodeExpr
l CodeExpr -> [CodeExpr] -> [CodeExpr]
forall a. a -> [a] -> [a]
: [CodeExpr]
r)
addRe l :: CodeExpr
l r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
AddRe [CodeExpr
l, CodeExpr
r]
mulI :: CodeExpr -> CodeExpr -> CodeExpr
mulI l :: CodeExpr
l (Lit (Int 1)) = CodeExpr
l
mulI (Lit (Int 1)) r :: CodeExpr
r = CodeExpr
r
mulI (AssocA MulI l :: [CodeExpr]
l) (AssocA MulI r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulI ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr]
r)
mulI (AssocA MulI l :: [CodeExpr]
l) r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulI ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr
r])
mulI l :: CodeExpr
l (AssocA MulI r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulI (CodeExpr
l CodeExpr -> [CodeExpr] -> [CodeExpr]
forall a. a -> [a] -> [a]
: [CodeExpr]
r)
mulI l :: CodeExpr
l r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulI [CodeExpr
l, CodeExpr
r]
mulRe :: CodeExpr -> CodeExpr -> CodeExpr
mulRe l :: CodeExpr
l (Lit (Dbl 1)) = CodeExpr
l
mulRe (Lit (Dbl 1)) r :: CodeExpr
r = CodeExpr
r
mulRe l :: CodeExpr
l (Lit (ExactDbl 1)) = CodeExpr
l
mulRe (Lit (ExactDbl 1)) r :: CodeExpr
r = CodeExpr
r
mulRe (AssocA MulRe l :: [CodeExpr]
l) (AssocA MulRe r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulRe ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr]
r)
mulRe (AssocA MulRe l :: [CodeExpr]
l) r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulRe ([CodeExpr]
l [CodeExpr] -> [CodeExpr] -> [CodeExpr]
forall a. [a] -> [a] -> [a]
++ [CodeExpr
r])
mulRe l :: CodeExpr
l (AssocA MulRe r :: [CodeExpr]
r) = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulRe (CodeExpr
l CodeExpr -> [CodeExpr] -> [CodeExpr]
forall a. a -> [a] -> [a]
: [CodeExpr]
r)
mulRe l :: CodeExpr
l r :: CodeExpr
r = AssocArithOper -> [CodeExpr] -> CodeExpr
AssocA AssocArithOper
MulRe [CodeExpr
l, CodeExpr
r]
$- :: CodeExpr -> CodeExpr -> CodeExpr
($-) = ArithBinOp -> CodeExpr -> CodeExpr -> CodeExpr
ArithBinaryOp ArithBinOp
Subt
$/ :: CodeExpr -> CodeExpr -> CodeExpr
($/) = ArithBinOp -> CodeExpr -> CodeExpr -> CodeExpr
ArithBinaryOp ArithBinOp
Frac
$^ :: CodeExpr -> CodeExpr -> CodeExpr
($^) = ArithBinOp -> CodeExpr -> CodeExpr -> CodeExpr
ArithBinaryOp ArithBinOp
Pow
$=> :: CodeExpr -> CodeExpr -> CodeExpr
($=>) = BoolBinOp -> CodeExpr -> CodeExpr -> CodeExpr
BoolBinaryOp BoolBinOp
Impl
$<=> :: CodeExpr -> CodeExpr -> CodeExpr
($<=>) = BoolBinOp -> CodeExpr -> CodeExpr -> CodeExpr
BoolBinaryOp BoolBinOp
Iff
a :: CodeExpr
a $&& :: CodeExpr -> CodeExpr -> CodeExpr
$&& b :: CodeExpr
b = AssocBoolOper -> [CodeExpr] -> CodeExpr
AssocB AssocBoolOper
And [CodeExpr
a, CodeExpr
b]
a :: CodeExpr
a $|| :: CodeExpr -> CodeExpr -> CodeExpr
$|| b :: CodeExpr
b = AssocBoolOper -> [CodeExpr] -> CodeExpr
AssocB AssocBoolOper
Or [CodeExpr
a, CodeExpr
b]
abs_ :: CodeExpr -> CodeExpr
abs_ = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Abs
neg :: CodeExpr -> CodeExpr
neg = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Neg
log :: CodeExpr -> CodeExpr
log = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Log
ln :: CodeExpr -> CodeExpr
ln = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Ln
sqrt :: CodeExpr -> CodeExpr
sqrt = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Sqrt
sin :: CodeExpr -> CodeExpr
sin = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Sin
cos :: CodeExpr -> CodeExpr
cos = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Cos
tan :: CodeExpr -> CodeExpr
tan = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Tan
sec :: CodeExpr -> CodeExpr
sec = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Sec
csc :: CodeExpr -> CodeExpr
csc = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Csc
cot :: CodeExpr -> CodeExpr
cot = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Cot
arcsin :: CodeExpr -> CodeExpr
arcsin = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Arcsin
arccos :: CodeExpr -> CodeExpr
arccos = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Arccos
arctan :: CodeExpr -> CodeExpr
arctan = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Arctan
exp :: CodeExpr -> CodeExpr
exp = UFunc -> CodeExpr -> CodeExpr
UnaryOp UFunc
Exp
dim :: CodeExpr -> CodeExpr
dim = UFuncVN -> CodeExpr -> CodeExpr
UnaryOpVN UFuncVN
Dim
norm :: CodeExpr -> CodeExpr
norm = UFuncVN -> CodeExpr -> CodeExpr
UnaryOpVN UFuncVN
Norm
negVec :: CodeExpr -> CodeExpr
negVec = UFuncVV -> CodeExpr -> CodeExpr
UnaryOpVV UFuncVV
NegV
not_ :: CodeExpr -> CodeExpr
not_ = UFuncB -> CodeExpr -> CodeExpr
UnaryOpB UFuncB
Not
idx :: CodeExpr -> CodeExpr -> CodeExpr
idx = LABinOp -> CodeExpr -> CodeExpr -> CodeExpr
LABinaryOp LABinOp
Index
defint :: Symbol -> CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr
defint v :: Symbol
v low :: CodeExpr
low high :: CodeExpr
high = AssocArithOper
-> DiscreteDomainDesc CodeExpr CodeExpr -> CodeExpr -> CodeExpr
Operator AssocArithOper
AddRe (Symbol
-> RTopology
-> CodeExpr
-> CodeExpr
-> DiscreteDomainDesc CodeExpr CodeExpr
forall a b.
Symbol -> RTopology -> a -> b -> DomainDesc 'Discrete a b
BoundedDD Symbol
v RTopology
Continuous CodeExpr
low CodeExpr
high)
defsum :: Symbol -> CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr
defsum v :: Symbol
v low :: CodeExpr
low high :: CodeExpr
high = AssocArithOper
-> DiscreteDomainDesc CodeExpr CodeExpr -> CodeExpr -> CodeExpr
Operator AssocArithOper
AddRe (Symbol
-> RTopology
-> CodeExpr
-> CodeExpr
-> DiscreteDomainDesc CodeExpr CodeExpr
forall a b.
Symbol -> RTopology -> a -> b -> DomainDesc 'Discrete a b
BoundedDD Symbol
v RTopology
Discrete CodeExpr
low CodeExpr
high)
defprod :: Symbol -> CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr
defprod v :: Symbol
v low :: CodeExpr
low high :: CodeExpr
high = AssocArithOper
-> DiscreteDomainDesc CodeExpr CodeExpr -> CodeExpr -> CodeExpr
Operator AssocArithOper
MulRe (Symbol
-> RTopology
-> CodeExpr
-> CodeExpr
-> DiscreteDomainDesc CodeExpr CodeExpr
forall a b.
Symbol -> RTopology -> a -> b -> DomainDesc 'Discrete a b
BoundedDD Symbol
v RTopology
Discrete CodeExpr
low CodeExpr
high)
realInterval :: c -> RealInterval CodeExpr CodeExpr -> CodeExpr
realInterval c :: c
c = UID -> RealInterval CodeExpr CodeExpr -> CodeExpr
RealI (c
c c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Lens' c UID
uid)
euclidean :: [CodeExpr] -> CodeExpr
euclidean = CodeExpr -> CodeExpr
forall r. ExprC r => r -> r
sqrt (CodeExpr -> CodeExpr)
-> ([CodeExpr] -> CodeExpr) -> [CodeExpr] -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (CodeExpr -> CodeExpr -> CodeExpr) -> [CodeExpr] -> CodeExpr
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 CodeExpr -> CodeExpr -> CodeExpr
forall r. ExprC r => r -> r -> r
addRe ([CodeExpr] -> CodeExpr)
-> ([CodeExpr] -> [CodeExpr]) -> [CodeExpr] -> CodeExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (CodeExpr -> CodeExpr) -> [CodeExpr] -> [CodeExpr]
forall a b. (a -> b) -> [a] -> [b]
map CodeExpr -> CodeExpr
forall r. (ExprC r, LiteralC r) => r -> r
square
cross :: CodeExpr -> CodeExpr -> CodeExpr
cross = VVVBinOp -> CodeExpr -> CodeExpr -> CodeExpr
VVVBinaryOp VVVBinOp
Cross
completeCase :: [(CodeExpr, CodeExpr)] -> CodeExpr
completeCase = Completeness -> [(CodeExpr, CodeExpr)] -> CodeExpr
Case Completeness
Complete
incompleteCase :: [(CodeExpr, CodeExpr)] -> CodeExpr
incompleteCase = Completeness -> [(CodeExpr, CodeExpr)] -> CodeExpr
Case Completeness
Incomplete
matrix :: [[CodeExpr]] -> CodeExpr
matrix = [[CodeExpr]] -> CodeExpr
Matrix
m2x2 :: CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr
m2x2 a :: CodeExpr
a b :: CodeExpr
b c :: CodeExpr
c d :: CodeExpr
d = [[CodeExpr]] -> CodeExpr
forall r. ExprC r => [[r]] -> r
matrix [[CodeExpr
a,CodeExpr
b],[CodeExpr
c,CodeExpr
d]]
vec2D :: CodeExpr -> CodeExpr -> CodeExpr
vec2D a :: CodeExpr
a b :: CodeExpr
b = [[CodeExpr]] -> CodeExpr
forall r. ExprC r => [[r]] -> r
matrix [[CodeExpr
a],[CodeExpr
b]]
dgnl2x2 :: CodeExpr -> CodeExpr -> CodeExpr
dgnl2x2 a :: CodeExpr
a = CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr -> CodeExpr
forall r. ExprC r => r -> r -> r -> r -> r
m2x2 CodeExpr
a (Integer -> CodeExpr
forall r. LiteralC r => Integer -> r
int 0) (Integer -> CodeExpr
forall r. LiteralC r => Integer -> r
int 0)
apply :: f -> [CodeExpr] -> CodeExpr
apply f :: f
f ps :: [CodeExpr]
ps = UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
FCall (f
f f -> Getting UID f UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID f UID
forall c. HasUID c => Lens' c UID
uid) [CodeExpr]
ps []
applyWithNamedArgs :: f -> [CodeExpr] -> [(a, CodeExpr)] -> CodeExpr
applyWithNamedArgs f :: f
f ps :: [CodeExpr]
ps ns :: [(a, CodeExpr)]
ns = UID -> [CodeExpr] -> [(UID, CodeExpr)] -> CodeExpr
FCall (f
f f -> Getting UID f UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID f UID
forall c. HasUID c => Lens' c UID
uid) [CodeExpr]
ps ([UID] -> [CodeExpr] -> [(UID, CodeExpr)]
forall a b. [a] -> [b] -> [(a, b)]
zip (((a, CodeExpr) -> UID) -> [(a, CodeExpr)] -> [UID]
forall a b. (a -> b) -> [a] -> [b]
map ((a -> Getting UID a UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID a UID
forall c. HasUID c => Lens' c UID
uid) (a -> UID) -> ((a, CodeExpr) -> a) -> (a, CodeExpr) -> UID
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a, CodeExpr) -> a
forall a b. (a, b) -> a
fst) [(a, CodeExpr)]
ns)
(((a, CodeExpr) -> CodeExpr) -> [(a, CodeExpr)] -> [CodeExpr]
forall a b. (a -> b) -> [a] -> [b]
map (a, CodeExpr) -> CodeExpr
forall a b. (a, b) -> b
snd [(a, CodeExpr)]
ns))
sy :: c -> CodeExpr
sy x :: c
x = UID -> CodeExpr
C (c
x c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Lens' c UID
uid)