{-# LANGUAGE GADTs #-}
module Language.Drasil.Expr.Lang where
import Language.Drasil.Literal.Lang (Literal(..))
import Language.Drasil.Space (DiscreteDomainDesc, RealInterval)
import Language.Drasil.UID (UID)
import Language.Drasil.Literal.Class (LiteralC(..))
type Relation = Expr
type Variable = String
data ArithBinOp = Frac | Pow | Subt
deriving ArithBinOp -> ArithBinOp -> Bool
(ArithBinOp -> ArithBinOp -> Bool)
-> (ArithBinOp -> ArithBinOp -> Bool) -> Eq ArithBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: ArithBinOp -> ArithBinOp -> Bool
$c/= :: ArithBinOp -> ArithBinOp -> Bool
== :: ArithBinOp -> ArithBinOp -> Bool
$c== :: ArithBinOp -> ArithBinOp -> Bool
Eq
data EqBinOp = Eq | NEq
deriving EqBinOp -> EqBinOp -> Bool
(EqBinOp -> EqBinOp -> Bool)
-> (EqBinOp -> EqBinOp -> Bool) -> Eq EqBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: EqBinOp -> EqBinOp -> Bool
$c/= :: EqBinOp -> EqBinOp -> Bool
== :: EqBinOp -> EqBinOp -> Bool
$c== :: EqBinOp -> EqBinOp -> Bool
Eq
data BoolBinOp = Impl | Iff
deriving BoolBinOp -> BoolBinOp -> Bool
(BoolBinOp -> BoolBinOp -> Bool)
-> (BoolBinOp -> BoolBinOp -> Bool) -> Eq BoolBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: BoolBinOp -> BoolBinOp -> Bool
$c/= :: BoolBinOp -> BoolBinOp -> Bool
== :: BoolBinOp -> BoolBinOp -> Bool
$c== :: BoolBinOp -> BoolBinOp -> Bool
Eq
data LABinOp = Index
deriving LABinOp -> LABinOp -> Bool
(LABinOp -> LABinOp -> Bool)
-> (LABinOp -> LABinOp -> Bool) -> Eq LABinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LABinOp -> LABinOp -> Bool
$c/= :: LABinOp -> LABinOp -> Bool
== :: LABinOp -> LABinOp -> Bool
$c== :: LABinOp -> LABinOp -> Bool
Eq
data OrdBinOp = Lt | Gt | LEq | GEq
deriving OrdBinOp -> OrdBinOp -> Bool
(OrdBinOp -> OrdBinOp -> Bool)
-> (OrdBinOp -> OrdBinOp -> Bool) -> Eq OrdBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: OrdBinOp -> OrdBinOp -> Bool
$c/= :: OrdBinOp -> OrdBinOp -> Bool
== :: OrdBinOp -> OrdBinOp -> Bool
$c== :: OrdBinOp -> OrdBinOp -> Bool
Eq
data VVVBinOp = Cross
deriving VVVBinOp -> VVVBinOp -> Bool
(VVVBinOp -> VVVBinOp -> Bool)
-> (VVVBinOp -> VVVBinOp -> Bool) -> Eq VVVBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVVBinOp -> VVVBinOp -> Bool
$c/= :: VVVBinOp -> VVVBinOp -> Bool
== :: VVVBinOp -> VVVBinOp -> Bool
$c== :: VVVBinOp -> VVVBinOp -> Bool
Eq
data VVNBinOp = Dot
deriving VVNBinOp -> VVNBinOp -> Bool
(VVNBinOp -> VVNBinOp -> Bool)
-> (VVNBinOp -> VVNBinOp -> Bool) -> Eq VVNBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVNBinOp -> VVNBinOp -> Bool
$c/= :: VVNBinOp -> VVNBinOp -> Bool
== :: VVNBinOp -> VVNBinOp -> Bool
$c== :: VVNBinOp -> VVNBinOp -> Bool
Eq
data AssocArithOper = AddI | AddRe | MulI | MulRe
deriving AssocArithOper -> AssocArithOper -> Bool
(AssocArithOper -> AssocArithOper -> Bool)
-> (AssocArithOper -> AssocArithOper -> Bool) -> Eq AssocArithOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocArithOper -> AssocArithOper -> Bool
$c/= :: AssocArithOper -> AssocArithOper -> Bool
== :: AssocArithOper -> AssocArithOper -> Bool
$c== :: AssocArithOper -> AssocArithOper -> Bool
Eq
data AssocBoolOper = And | Or
deriving AssocBoolOper -> AssocBoolOper -> Bool
(AssocBoolOper -> AssocBoolOper -> Bool)
-> (AssocBoolOper -> AssocBoolOper -> Bool) -> Eq AssocBoolOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocBoolOper -> AssocBoolOper -> Bool
$c/= :: AssocBoolOper -> AssocBoolOper -> Bool
== :: AssocBoolOper -> AssocBoolOper -> Bool
$c== :: AssocBoolOper -> AssocBoolOper -> Bool
Eq
data UFunc = Abs | Log | Ln | Sin | Cos | Tan | Sec | Csc | Cot | Arcsin
| Arccos | Arctan | Exp | Sqrt | Neg
deriving UFunc -> UFunc -> Bool
(UFunc -> UFunc -> Bool) -> (UFunc -> UFunc -> Bool) -> Eq UFunc
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFunc -> UFunc -> Bool
$c/= :: UFunc -> UFunc -> Bool
== :: UFunc -> UFunc -> Bool
$c== :: UFunc -> UFunc -> Bool
Eq
data UFuncB = Not
deriving UFuncB -> UFuncB -> Bool
(UFuncB -> UFuncB -> Bool)
-> (UFuncB -> UFuncB -> Bool) -> Eq UFuncB
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncB -> UFuncB -> Bool
$c/= :: UFuncB -> UFuncB -> Bool
== :: UFuncB -> UFuncB -> Bool
$c== :: UFuncB -> UFuncB -> Bool
Eq
data UFuncVV = NegV
deriving UFuncVV -> UFuncVV -> Bool
(UFuncVV -> UFuncVV -> Bool)
-> (UFuncVV -> UFuncVV -> Bool) -> Eq UFuncVV
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVV -> UFuncVV -> Bool
$c/= :: UFuncVV -> UFuncVV -> Bool
== :: UFuncVV -> UFuncVV -> Bool
$c== :: UFuncVV -> UFuncVV -> Bool
Eq
data UFuncVN = Norm | Dim
deriving UFuncVN -> UFuncVN -> Bool
(UFuncVN -> UFuncVN -> Bool)
-> (UFuncVN -> UFuncVN -> Bool) -> Eq UFuncVN
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVN -> UFuncVN -> Bool
$c/= :: UFuncVN -> UFuncVN -> Bool
== :: UFuncVN -> UFuncVN -> Bool
$c== :: UFuncVN -> UFuncVN -> Bool
Eq
data Completeness = Complete | Incomplete
deriving Completeness -> Completeness -> Bool
(Completeness -> Completeness -> Bool)
-> (Completeness -> Completeness -> Bool) -> Eq Completeness
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Completeness -> Completeness -> Bool
$c/= :: Completeness -> Completeness -> Bool
== :: Completeness -> Completeness -> Bool
$c== :: Completeness -> Completeness -> Bool
Eq
data Expr where
Lit :: Literal -> Expr
AssocA :: AssocArithOper -> [Expr] -> Expr
AssocB :: AssocBoolOper -> [Expr] -> Expr
C :: UID -> Expr
FCall :: UID -> [Expr] -> [(UID, Expr)] -> Expr
Case :: Completeness -> [(Expr, Relation)] -> Expr
Matrix :: [[Expr]] -> Expr
UnaryOp :: UFunc -> Expr -> Expr
UnaryOpB :: UFuncB -> Expr -> Expr
UnaryOpVV :: UFuncVV -> Expr -> Expr
UnaryOpVN :: UFuncVN -> Expr -> Expr
ArithBinaryOp :: ArithBinOp -> Expr -> Expr -> Expr
BoolBinaryOp :: BoolBinOp -> Expr -> Expr -> Expr
EqBinaryOp :: EqBinOp -> Expr -> Expr -> Expr
LABinaryOp :: LABinOp -> Expr -> Expr -> Expr
OrdBinaryOp :: OrdBinOp -> Expr -> Expr -> Expr
VVVBinaryOp :: VVVBinOp -> Expr -> Expr -> Expr
VVNBinaryOp :: VVNBinOp -> Expr -> Expr -> Expr
Operator :: AssocArithOper -> DiscreteDomainDesc Expr Expr -> Expr -> Expr
RealI :: UID -> RealInterval Expr Expr -> Expr
instance Eq Expr where
Lit (Int l :: Integer
l) == :: Expr -> Expr -> Bool
== Lit (Int r :: Integer
r) = Integer
l Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
r
Lit (Str l :: String
l) == Lit (Str r :: String
r) = String
l String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
r
Lit (Dbl l :: Double
l) == Lit (Dbl r :: Double
r) = Double
l Double -> Double -> Bool
forall a. Eq a => a -> a -> Bool
== Double
r
Lit (ExactDbl l :: Integer
l) == Lit (ExactDbl r :: Integer
r) = Integer
l Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
r
Lit (Perc l1 :: Integer
l1 l2 :: Integer
l2) == Lit (Perc r1 :: Integer
r1 r2 :: Integer
r2) = Integer
l1 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
r1 Bool -> Bool -> Bool
&& Integer
l2 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
r2
AssocA o1 :: AssocArithOper
o1 l1 :: [Expr]
l1 == AssocA o2 :: AssocArithOper
o2 l2 :: [Expr]
l2 = AssocArithOper
o1 AssocArithOper -> AssocArithOper -> Bool
forall a. Eq a => a -> a -> Bool
== AssocArithOper
o2 Bool -> Bool -> Bool
&& [Expr]
l1 [Expr] -> [Expr] -> Bool
forall a. Eq a => a -> a -> Bool
== [Expr]
l2
AssocB o1 :: AssocBoolOper
o1 l1 :: [Expr]
l1 == AssocB o2 :: AssocBoolOper
o2 l2 :: [Expr]
l2 = AssocBoolOper
o1 AssocBoolOper -> AssocBoolOper -> Bool
forall a. Eq a => a -> a -> Bool
== AssocBoolOper
o2 Bool -> Bool -> Bool
&& [Expr]
l1 [Expr] -> [Expr] -> Bool
forall a. Eq a => a -> a -> Bool
== [Expr]
l2
C a :: UID
a == C b :: UID
b = UID
a UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== UID
b
FCall a :: UID
a b :: [Expr]
b c :: [(UID, Expr)]
c == FCall d :: UID
d e :: [Expr]
e f :: [(UID, Expr)]
f = UID
a UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== UID
d Bool -> Bool -> Bool
&& [Expr]
b [Expr] -> [Expr] -> Bool
forall a. Eq a => a -> a -> Bool
== [Expr]
e Bool -> Bool -> Bool
&& [(UID, Expr)]
c [(UID, Expr)] -> [(UID, Expr)] -> Bool
forall a. Eq a => a -> a -> Bool
== [(UID, Expr)]
f
Case a :: Completeness
a b :: [(Expr, Expr)]
b == Case c :: Completeness
c d :: [(Expr, Expr)]
d = Completeness
a Completeness -> Completeness -> Bool
forall a. Eq a => a -> a -> Bool
== Completeness
c Bool -> Bool -> Bool
&& [(Expr, Expr)]
b [(Expr, Expr)] -> [(Expr, Expr)] -> Bool
forall a. Eq a => a -> a -> Bool
== [(Expr, Expr)]
d
UnaryOp a :: UFunc
a b :: Expr
b == UnaryOp c :: UFunc
c d :: Expr
d = UFunc
a UFunc -> UFunc -> Bool
forall a. Eq a => a -> a -> Bool
== UFunc
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
UnaryOpB a :: UFuncB
a b :: Expr
b == UnaryOpB c :: UFuncB
c d :: Expr
d = UFuncB
a UFuncB -> UFuncB -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncB
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
UnaryOpVV a :: UFuncVV
a b :: Expr
b == UnaryOpVV c :: UFuncVV
c d :: Expr
d = UFuncVV
a UFuncVV -> UFuncVV -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncVV
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
UnaryOpVN a :: UFuncVN
a b :: Expr
b == UnaryOpVN c :: UFuncVN
c d :: Expr
d = UFuncVN
a UFuncVN -> UFuncVN -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncVN
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
ArithBinaryOp o :: ArithBinOp
o a :: Expr
a b :: Expr
b == ArithBinaryOp p :: ArithBinOp
p c :: Expr
c d :: Expr
d = ArithBinOp
o ArithBinOp -> ArithBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== ArithBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
BoolBinaryOp o :: BoolBinOp
o a :: Expr
a b :: Expr
b == BoolBinaryOp p :: BoolBinOp
p c :: Expr
c d :: Expr
d = BoolBinOp
o BoolBinOp -> BoolBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== BoolBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
EqBinaryOp o :: EqBinOp
o a :: Expr
a b :: Expr
b == EqBinaryOp p :: EqBinOp
p c :: Expr
c d :: Expr
d = EqBinOp
o EqBinOp -> EqBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== EqBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
OrdBinaryOp o :: OrdBinOp
o a :: Expr
a b :: Expr
b == OrdBinaryOp p :: OrdBinOp
p c :: Expr
c d :: Expr
d = OrdBinOp
o OrdBinOp -> OrdBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== OrdBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
LABinaryOp o :: LABinOp
o a :: Expr
a b :: Expr
b == LABinaryOp p :: LABinOp
p c :: Expr
c d :: Expr
d = LABinOp
o LABinOp -> LABinOp -> Bool
forall a. Eq a => a -> a -> Bool
== LABinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
VVVBinaryOp o :: VVVBinOp
o a :: Expr
a b :: Expr
b == VVVBinaryOp p :: VVVBinOp
p c :: Expr
c d :: Expr
d = VVVBinOp
o VVVBinOp -> VVVBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== VVVBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
VVNBinaryOp o :: VVNBinOp
o a :: Expr
a b :: Expr
b == VVNBinaryOp p :: VVNBinOp
p c :: Expr
c d :: Expr
d = VVNBinOp
o VVNBinOp -> VVNBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== VVNBinOp
p Bool -> Bool -> Bool
&& Expr
a Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
c Bool -> Bool -> Bool
&& Expr
b Expr -> Expr -> Bool
forall a. Eq a => a -> a -> Bool
== Expr
d
_ == _ = Bool
False
instance LiteralC Expr where
int :: Integer -> Expr
int = Literal -> Expr
Lit (Literal -> Expr) -> (Integer -> Literal) -> Integer -> Expr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
int
str :: String -> Expr
str = Literal -> Expr
Lit (Literal -> Expr) -> (String -> Literal) -> String -> Expr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Literal
forall r. LiteralC r => String -> r
str
dbl :: Double -> Expr
dbl = Literal -> Expr
Lit (Literal -> Expr) -> (Double -> Literal) -> Double -> Expr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Literal
forall r. LiteralC r => Double -> r
dbl
exactDbl :: Integer -> Expr
exactDbl = Literal -> Expr
Lit (Literal -> Expr) -> (Integer -> Literal) -> Integer -> Expr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
exactDbl
perc :: Integer -> Integer -> Expr
perc l :: Integer
l r :: Integer
r = Literal -> Expr
Lit (Literal -> Expr) -> Literal -> Expr
forall a b. (a -> b) -> a -> b
$ Integer -> Integer -> Literal
forall r. LiteralC r => Integer -> Integer -> r
perc Integer
l Integer
r