{-# LANGUAGE RankNTypes, FlexibleInstances, GADTs #-}
{-# OPTIONS_GHC -Wno-redundant-constraints #-}
module Language.Drasil.Chunk.Eq (
QDefinition,
fromEqn, fromEqn', fromEqnSt,
fromEqnSt', fromEqnSt'', mkQDefSt, mkQuantDef, mkQuantDef', ec,
mkFuncDef, mkFuncDef', mkFuncDefByQ
) where
import Control.Lens ((^.), view, lens, Lens')
import Language.Drasil.Chunk.UnitDefn (unitWrapper, MayHaveUnit(getUnit), UnitDefn)
import Language.Drasil.Symbol (HasSymbol(symbol), Symbol)
import Language.Drasil.Classes (NamedIdea(term), Idea(getA),
IsUnit, DefiningExpr(defnExpr), Definition(defn), Quantity,
ConceptDomain(cdom), Express(express))
import Language.Drasil.Chunk.DefinedQuantity (DefinedQuantityDict, dqd, dqd')
import Language.Drasil.Chunk.Concept (cc')
import Language.Drasil.Chunk.NamedIdea (ncUID, mkIdea, nw)
import Language.Drasil.Expr.Class (ExprC(apply, sy))
import Language.Drasil.ModelExpr.Class (ModelExprC(defines))
import Language.Drasil.ModelExpr.Lang (ModelExpr(C))
import Language.Drasil.NounPhrase.Core (NP)
import Language.Drasil.Space (mkFunction, Space, Space, HasSpace(..))
import Language.Drasil.Sentence (Sentence(EmptyS))
import Language.Drasil.Stages (Stage)
import Language.Drasil.UID (UID, HasUID(..))
data QDefinition e where
QD :: DefinedQuantityDict -> [UID] -> e -> QDefinition e
qdQua :: Lens' (QDefinition e) DefinedQuantityDict
qdQua :: (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
qdQua = (QDefinition e -> DefinedQuantityDict)
-> (QDefinition e -> DefinedQuantityDict -> QDefinition e)
-> Lens
(QDefinition e)
(QDefinition e)
DefinedQuantityDict
DefinedQuantityDict
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD qua :: DefinedQuantityDict
qua _ _) -> DefinedQuantityDict
qua) (\(QD _ ins :: [UID]
ins e :: e
e) qua' :: DefinedQuantityDict
qua' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua' [UID]
ins e
e)
qdInputs :: Lens' (QDefinition e) [UID]
qdInputs :: ([UID] -> f [UID]) -> QDefinition e -> f (QDefinition e)
qdInputs = (QDefinition e -> [UID])
-> (QDefinition e -> [UID] -> QDefinition e)
-> Lens (QDefinition e) (QDefinition e) [UID] [UID]
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD _ ins :: [UID]
ins _) -> [UID]
ins) (\(QD qua :: DefinedQuantityDict
qua _ e :: e
e) ins' :: [UID]
ins' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua [UID]
ins' e
e)
qdExpr :: Lens' (QDefinition e) e
qdExpr :: (e -> f e) -> QDefinition e -> f (QDefinition e)
qdExpr = (QDefinition e -> e)
-> (QDefinition e -> e -> QDefinition e)
-> Lens (QDefinition e) (QDefinition e) e e
forall s a b t. (s -> a) -> (s -> b -> t) -> Lens s t a b
lens (\(QD _ _ e :: e
e) -> e
e) (\(QD qua :: DefinedQuantityDict
qua ins :: [UID]
ins _) e' :: e
e' -> DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD DefinedQuantityDict
qua [UID]
ins e
e')
instance HasUID (QDefinition e) where uid :: (UID -> f UID) -> QDefinition e -> f (QDefinition e)
uid = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((UID -> f UID) -> DefinedQuantityDict -> f DefinedQuantityDict)
-> (UID -> f UID)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (UID -> f UID) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. HasUID c => Lens' c UID
uid
instance NamedIdea (QDefinition e) where term :: (NP -> f NP) -> QDefinition e -> f (QDefinition e)
term = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((NP -> f NP) -> DefinedQuantityDict -> f DefinedQuantityDict)
-> (NP -> f NP)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (NP -> f NP) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. NamedIdea c => Lens' c NP
term
instance Idea (QDefinition e) where getA :: QDefinition e -> Maybe String
getA = DefinedQuantityDict -> Maybe String
forall c. Idea c => c -> Maybe String
getA (DefinedQuantityDict -> Maybe String)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Maybe String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (QDefinition e
-> Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> DefinedQuantityDict
forall s a. s -> Getting a s a -> a
^. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua)
instance HasSpace (QDefinition e) where typ :: (Space -> f Space) -> QDefinition e -> f (QDefinition e)
typ = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((Space -> f Space)
-> DefinedQuantityDict -> f DefinedQuantityDict)
-> (Space -> f Space)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Space -> f Space) -> DefinedQuantityDict -> f DefinedQuantityDict
forall c. HasSpace c => Lens' c Space
typ
instance HasSymbol (QDefinition e) where symbol :: QDefinition e -> Stage -> Symbol
symbol = DefinedQuantityDict -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol (DefinedQuantityDict -> Stage -> Symbol)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Stage
-> Symbol
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (QDefinition e
-> Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> DefinedQuantityDict
forall s a. s -> Getting a s a -> a
^. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua)
instance Definition (QDefinition e) where defn :: (Sentence -> f Sentence) -> QDefinition e -> f (QDefinition e)
defn = (DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e)
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua ((DefinedQuantityDict -> f DefinedQuantityDict)
-> QDefinition e -> f (QDefinition e))
-> ((Sentence -> f Sentence)
-> DefinedQuantityDict -> f DefinedQuantityDict)
-> (Sentence -> f Sentence)
-> QDefinition e
-> f (QDefinition e)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Sentence -> f Sentence)
-> DefinedQuantityDict -> f DefinedQuantityDict
forall c. Definition c => Lens' c Sentence
defn
instance Quantity (QDefinition e) where
instance Eq (QDefinition e) where a :: QDefinition e
a == :: QDefinition e -> QDefinition e -> Bool
== b :: QDefinition e
b = QDefinition e
a QDefinition e -> Getting UID (QDefinition e) UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID (QDefinition e) UID
forall c. HasUID c => Lens' c UID
uid UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== QDefinition e
b QDefinition e -> Getting UID (QDefinition e) UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID (QDefinition e) UID
forall c. HasUID c => Lens' c UID
uid
instance MayHaveUnit (QDefinition e) where getUnit :: QDefinition e -> Maybe UnitDefn
getUnit = DefinedQuantityDict -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit (DefinedQuantityDict -> Maybe UnitDefn)
-> (QDefinition e -> DefinedQuantityDict)
-> QDefinition e
-> Maybe UnitDefn
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> QDefinition e -> DefinedQuantityDict
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua
instance DefiningExpr QDefinition where defnExpr :: (e -> f e) -> QDefinition e -> f (QDefinition e)
defnExpr = (e -> f e) -> QDefinition e -> f (QDefinition e)
forall e. Lens' (QDefinition e) e
qdExpr
instance Express e => Express (QDefinition e) where
express :: QDefinition e -> ModelExpr
express q :: QDefinition e
q = ModelExpr -> ModelExpr
f (ModelExpr -> ModelExpr) -> ModelExpr -> ModelExpr
forall a b. (a -> b) -> a -> b
$ e -> ModelExpr
forall c. Express c => c -> ModelExpr
express (e -> ModelExpr) -> e -> ModelExpr
forall a b. (a -> b) -> a -> b
$ QDefinition e
q QDefinition e -> Getting e (QDefinition e) e -> e
forall s a. s -> Getting a s a -> a
^. Getting e (QDefinition e) e
forall (c :: * -> *) e. DefiningExpr c => Lens' (c e) e
defnExpr
where
f :: ModelExpr -> ModelExpr
f = case QDefinition e
q QDefinition e -> Getting [UID] (QDefinition e) [UID] -> [UID]
forall s a. s -> Getting a s a -> a
^. Getting [UID] (QDefinition e) [UID]
forall e. Lens' (QDefinition e) [UID]
qdInputs of
[] -> ModelExpr -> ModelExpr -> ModelExpr
forall r. ModelExprC r => r -> r -> r
defines (QDefinition e -> ModelExpr
forall r c. (ExprC r, HasUID c, HasSymbol c) => c -> r
sy QDefinition e
q)
is :: [UID]
is -> ModelExpr -> ModelExpr -> ModelExpr
forall r. ModelExprC r => r -> r -> r
defines (ModelExpr -> ModelExpr -> ModelExpr)
-> ModelExpr -> ModelExpr -> ModelExpr
forall a b. (a -> b) -> a -> b
$ QDefinition e -> [ModelExpr] -> ModelExpr
forall r f. (ExprC r, HasUID f, HasSymbol f) => f -> [r] -> r
apply QDefinition e
q ((UID -> ModelExpr) -> [UID] -> [ModelExpr]
forall a b. (a -> b) -> [a] -> [b]
map UID -> ModelExpr
C [UID]
is)
instance ConceptDomain (QDefinition e) where cdom :: QDefinition e -> [UID]
cdom = DefinedQuantityDict -> [UID]
forall c. ConceptDomain c => c -> [UID]
cdom (DefinedQuantityDict -> [UID])
-> (QDefinition e -> DefinedQuantityDict) -> QDefinition e -> [UID]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
-> QDefinition e -> DefinedQuantityDict
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
view Getting DefinedQuantityDict (QDefinition e) DefinedQuantityDict
forall e. Lens' (QDefinition e) DefinedQuantityDict
qdQua
fromEqn :: IsUnit u => String -> NP -> Sentence -> Symbol -> Space -> u -> e -> QDefinition e
fromEqn :: String
-> NP -> Sentence -> Symbol -> Space -> u -> e -> QDefinition e
fromEqn nm :: String
nm desc :: NP
desc def :: Sentence
def symb :: Symbol
symb sp :: Space
sp un :: u
un =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk -> Symbol -> Space -> u -> DefinedQuantityDict
forall u.
IsUnit u =>
ConceptChunk -> Symbol -> Space -> u -> DefinedQuantityDict
dqd (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) Symbol
symb Space
sp u
un) []
fromEqn' :: String -> NP -> Sentence -> Symbol -> Space -> e -> QDefinition e
fromEqn' :: String -> NP -> Sentence -> Symbol -> Space -> e -> QDefinition e
fromEqn' nm :: String
nm desc :: NP
desc def :: Sentence
def symb :: Symbol
symb sp :: Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) (Symbol -> Stage -> Symbol
forall a b. a -> b -> a
const Symbol
symb) Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
fromEqnSt :: IsUnit u => UID -> NP -> Sentence -> (Stage -> Symbol) ->
Space -> u -> e -> QDefinition e
fromEqnSt :: UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> u
-> e
-> QDefinition e
fromEqnSt nm :: UID
nm desc :: NP
desc def :: Sentence
def symb :: Stage -> Symbol
symb sp :: Space
sp un :: u
un =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (NamedChunk -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (NamedChunk -> IdeaDict) -> NamedChunk -> IdeaDict
forall a b. (a -> b) -> a -> b
$ UID -> NP -> NamedChunk
ncUID UID
nm NP
desc) Sentence
def) Stage -> Symbol
symb Space
sp (UnitDefn -> Maybe UnitDefn
forall a. a -> Maybe a
Just (UnitDefn -> Maybe UnitDefn) -> UnitDefn -> Maybe UnitDefn
forall a b. (a -> b) -> a -> b
$ u -> UnitDefn
forall u. IsUnit u => u -> UnitDefn
unitWrapper u
un)) []
fromEqnSt' :: UID -> NP -> Sentence -> (Stage -> Symbol) -> Space -> e -> QDefinition e
fromEqnSt' :: UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt' nm :: UID
nm desc :: NP
desc def :: Sentence
def symb :: Stage -> Symbol
symb sp :: Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (NamedChunk -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (NamedChunk -> IdeaDict) -> NamedChunk -> IdeaDict
forall a b. (a -> b) -> a -> b
$ UID -> NP -> NamedChunk
ncUID UID
nm NP
desc) Sentence
def) Stage -> Symbol
symb Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
fromEqnSt'' :: String -> NP -> Sentence -> (Stage -> Symbol) -> Space -> e ->
QDefinition e
fromEqnSt'' :: String
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt'' nm :: String
nm desc :: NP
desc def :: Sentence
def symb :: Stage -> Symbol
symb sp :: Space
sp =
DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (String -> NP -> Maybe String -> IdeaDict
mkIdea String
nm NP
desc Maybe String
forall a. Maybe a
Nothing) Sentence
def) Stage -> Symbol
symb Space
sp Maybe UnitDefn
forall a. Maybe a
Nothing) []
mkQDefSt :: UID -> NP -> Sentence -> (Stage -> Symbol) -> Space ->
Maybe UnitDefn -> e -> QDefinition e
mkQDefSt :: UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt u :: UID
u n :: NP
n s :: Sentence
s symb :: Stage -> Symbol
symb sp :: Space
sp (Just ud :: UnitDefn
ud) e :: e
e = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> UnitDefn
-> e
-> QDefinition e
forall u e.
IsUnit u =>
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> u
-> e
-> QDefinition e
fromEqnSt UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp UnitDefn
ud e
e
mkQDefSt u :: UID
u n :: NP
n s :: Sentence
s symb :: Stage -> Symbol
symb sp :: Space
sp Nothing e :: e
e = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> e
-> QDefinition e
fromEqnSt' UID
u NP
n Sentence
s Stage -> Symbol
symb Space
sp e
e
mkQuantDef :: (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
mkQuantDef :: c -> e -> QDefinition e
mkQuantDef c :: c
c = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt (c
c c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Lens' c UID
uid) (c
c c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
term) Sentence
EmptyS (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Lens' c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)
mkQuantDef' :: (Quantity c, MayHaveUnit c) => c -> NP -> e -> QDefinition e
mkQuantDef' :: c -> NP -> e -> QDefinition e
mkQuantDef' c :: c
c t :: NP
t = UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
forall e.
UID
-> NP
-> Sentence
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> e
-> QDefinition e
mkQDefSt (c
c c -> Getting UID c UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID c UID
forall c. HasUID c => Lens' c UID
uid) NP
t Sentence
EmptyS (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Lens' c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)
ec :: (Quantity c, MayHaveUnit c) => c -> e -> QDefinition e
ec :: c -> e -> QDefinition e
ec c :: c
c = DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD (ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (c -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw c
c) Sentence
EmptyS) (c -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol c
c) (c
c c -> Getting Space c Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space c Space
forall c. HasSpace c => Lens' c Space
typ) (c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
c)) []
mkFuncDef0 :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 :: f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f :: f
f n :: NP
n s :: Sentence
s u :: Maybe UnitDefn
u is :: [i]
is = DefinedQuantityDict -> [UID] -> e -> QDefinition e
forall e. DefinedQuantityDict -> [UID] -> e -> QDefinition e
QD
(ConceptChunk
-> (Stage -> Symbol)
-> Space
-> Maybe UnitDefn
-> DefinedQuantityDict
dqd' (IdeaDict -> Sentence -> ConceptChunk
forall c. Idea c => c -> Sentence -> ConceptChunk
cc' (NamedChunk -> IdeaDict
forall c. Idea c => c -> IdeaDict
nw (UID -> NP -> NamedChunk
ncUID (f
f f -> Getting UID f UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID f UID
forall c. HasUID c => Lens' c UID
uid) NP
n)) Sentence
s) (f -> Stage -> Symbol
forall c. HasSymbol c => c -> Stage -> Symbol
symbol f
f)
([Space] -> Space -> Space
mkFunction ((i -> Space) -> [i] -> [Space]
forall a b. (a -> b) -> [a] -> [b]
map (i -> Getting Space i Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space i Space
forall c. HasSpace c => Lens' c Space
typ) [i]
is) (f
f f -> Getting Space f Space -> Space
forall s a. s -> Getting a s a -> a
^. Getting Space f Space
forall c. HasSpace c => Lens' c Space
typ)) Maybe UnitDefn
u) ((i -> UID) -> [i] -> [UID]
forall a b. (a -> b) -> [a] -> [b]
map (i -> Getting UID i UID -> UID
forall s a. s -> Getting a s a -> a
^. Getting UID i UID
forall c. HasUID c => Lens' c UID
uid) [i]
is)
mkFuncDef :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i,
IsUnit u) =>
f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef :: f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef f :: f
f n :: NP
n s :: Sentence
s u :: u
u = f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f
f NP
n Sentence
s (UnitDefn -> Maybe UnitDefn
forall a. a -> Maybe a
Just (UnitDefn -> Maybe UnitDefn) -> UnitDefn -> Maybe UnitDefn
forall a b. (a -> b) -> a -> b
$ u -> UnitDefn
forall u. IsUnit u => u -> UnitDefn
unitWrapper u
u)
mkFuncDef' :: (HasUID f, HasSymbol f, HasSpace f,
HasUID i, HasSymbol i, HasSpace i) =>
f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' :: f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' f :: f
f n :: NP
n s :: Sentence
s = f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> Maybe UnitDefn -> [i] -> e -> QDefinition e
mkFuncDef0 f
f NP
n Sentence
s Maybe UnitDefn
forall a. Maybe a
Nothing
mkFuncDefByQ :: (Quantity c, MayHaveUnit c, HasSpace c,
Quantity i, HasSpace i) =>
c -> [i] -> e -> QDefinition e
mkFuncDefByQ :: c -> [i] -> e -> QDefinition e
mkFuncDefByQ f :: c
f = case c -> Maybe UnitDefn
forall u. MayHaveUnit u => u -> Maybe UnitDefn
getUnit c
f of
Just u :: UnitDefn
u -> c -> NP -> Sentence -> UnitDefn -> [i] -> e -> QDefinition e
forall f i u e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i, IsUnit u) =>
f -> NP -> Sentence -> u -> [i] -> e -> QDefinition e
mkFuncDef c
f (c
f c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
term) Sentence
EmptyS UnitDefn
u
Nothing -> c -> NP -> Sentence -> [i] -> e -> QDefinition e
forall f i e.
(HasUID f, HasSymbol f, HasSpace f, HasUID i, HasSymbol i,
HasSpace i) =>
f -> NP -> Sentence -> [i] -> e -> QDefinition e
mkFuncDef' c
f (c
f c -> Getting NP c NP -> NP
forall s a. s -> Getting a s a -> a
^. Getting NP c NP
forall c. NamedIdea c => Lens' c NP
term) Sentence
EmptyS