{-# LANGUAGE GADTs #-}
module Language.Drasil.ModelExpr.Lang where
import Prelude hiding (sqrt)
import Language.Drasil.Expr.Lang (Completeness)
import Language.Drasil.Literal.Lang (Literal(..))
import Language.Drasil.Space (Space, DomainDesc, RealInterval)
import Language.Drasil.UID (UID)
import Language.Drasil.Literal.Class (LiteralC(..))
data ArithBinOp = Frac | Pow | Subt
deriving ArithBinOp -> ArithBinOp -> Bool
(ArithBinOp -> ArithBinOp -> Bool)
-> (ArithBinOp -> ArithBinOp -> Bool) -> Eq ArithBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: ArithBinOp -> ArithBinOp -> Bool
$c/= :: ArithBinOp -> ArithBinOp -> Bool
== :: ArithBinOp -> ArithBinOp -> Bool
$c== :: ArithBinOp -> ArithBinOp -> Bool
Eq
data EqBinOp = Eq | NEq
deriving EqBinOp -> EqBinOp -> Bool
(EqBinOp -> EqBinOp -> Bool)
-> (EqBinOp -> EqBinOp -> Bool) -> Eq EqBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: EqBinOp -> EqBinOp -> Bool
$c/= :: EqBinOp -> EqBinOp -> Bool
== :: EqBinOp -> EqBinOp -> Bool
$c== :: EqBinOp -> EqBinOp -> Bool
Eq
data BoolBinOp = Impl | Iff
deriving BoolBinOp -> BoolBinOp -> Bool
(BoolBinOp -> BoolBinOp -> Bool)
-> (BoolBinOp -> BoolBinOp -> Bool) -> Eq BoolBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: BoolBinOp -> BoolBinOp -> Bool
$c/= :: BoolBinOp -> BoolBinOp -> Bool
== :: BoolBinOp -> BoolBinOp -> Bool
$c== :: BoolBinOp -> BoolBinOp -> Bool
Eq
data LABinOp = Index
deriving LABinOp -> LABinOp -> Bool
(LABinOp -> LABinOp -> Bool)
-> (LABinOp -> LABinOp -> Bool) -> Eq LABinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LABinOp -> LABinOp -> Bool
$c/= :: LABinOp -> LABinOp -> Bool
== :: LABinOp -> LABinOp -> Bool
$c== :: LABinOp -> LABinOp -> Bool
Eq
data OrdBinOp = Lt | Gt | LEq | GEq
deriving OrdBinOp -> OrdBinOp -> Bool
(OrdBinOp -> OrdBinOp -> Bool)
-> (OrdBinOp -> OrdBinOp -> Bool) -> Eq OrdBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: OrdBinOp -> OrdBinOp -> Bool
$c/= :: OrdBinOp -> OrdBinOp -> Bool
== :: OrdBinOp -> OrdBinOp -> Bool
$c== :: OrdBinOp -> OrdBinOp -> Bool
Eq
data VVVBinOp = Cross
deriving VVVBinOp -> VVVBinOp -> Bool
(VVVBinOp -> VVVBinOp -> Bool)
-> (VVVBinOp -> VVVBinOp -> Bool) -> Eq VVVBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVVBinOp -> VVVBinOp -> Bool
$c/= :: VVVBinOp -> VVVBinOp -> Bool
== :: VVVBinOp -> VVVBinOp -> Bool
$c== :: VVVBinOp -> VVVBinOp -> Bool
Eq
data VVNBinOp = Dot
deriving VVNBinOp -> VVNBinOp -> Bool
(VVNBinOp -> VVNBinOp -> Bool)
-> (VVNBinOp -> VVNBinOp -> Bool) -> Eq VVNBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: VVNBinOp -> VVNBinOp -> Bool
$c/= :: VVNBinOp -> VVNBinOp -> Bool
== :: VVNBinOp -> VVNBinOp -> Bool
$c== :: VVNBinOp -> VVNBinOp -> Bool
Eq
data AssocArithOper = AddI | AddRe | MulI | MulRe
deriving AssocArithOper -> AssocArithOper -> Bool
(AssocArithOper -> AssocArithOper -> Bool)
-> (AssocArithOper -> AssocArithOper -> Bool) -> Eq AssocArithOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocArithOper -> AssocArithOper -> Bool
$c/= :: AssocArithOper -> AssocArithOper -> Bool
== :: AssocArithOper -> AssocArithOper -> Bool
$c== :: AssocArithOper -> AssocArithOper -> Bool
Eq
data AssocBoolOper = And | Or | Equivalence
deriving (AssocBoolOper -> AssocBoolOper -> Bool
(AssocBoolOper -> AssocBoolOper -> Bool)
-> (AssocBoolOper -> AssocBoolOper -> Bool) -> Eq AssocBoolOper
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: AssocBoolOper -> AssocBoolOper -> Bool
$c/= :: AssocBoolOper -> AssocBoolOper -> Bool
== :: AssocBoolOper -> AssocBoolOper -> Bool
$c== :: AssocBoolOper -> AssocBoolOper -> Bool
Eq, Int -> AssocBoolOper -> ShowS
[AssocBoolOper] -> ShowS
AssocBoolOper -> String
(Int -> AssocBoolOper -> ShowS)
-> (AssocBoolOper -> String)
-> ([AssocBoolOper] -> ShowS)
-> Show AssocBoolOper
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [AssocBoolOper] -> ShowS
$cshowList :: [AssocBoolOper] -> ShowS
show :: AssocBoolOper -> String
$cshow :: AssocBoolOper -> String
showsPrec :: Int -> AssocBoolOper -> ShowS
$cshowsPrec :: Int -> AssocBoolOper -> ShowS
Show)
data UFunc = Abs | Log | Ln | Sin | Cos | Tan | Sec | Csc | Cot | Arcsin
| Arccos | Arctan | Exp | Sqrt | Neg
deriving UFunc -> UFunc -> Bool
(UFunc -> UFunc -> Bool) -> (UFunc -> UFunc -> Bool) -> Eq UFunc
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFunc -> UFunc -> Bool
$c/= :: UFunc -> UFunc -> Bool
== :: UFunc -> UFunc -> Bool
$c== :: UFunc -> UFunc -> Bool
Eq
data UFuncB = Not
deriving UFuncB -> UFuncB -> Bool
(UFuncB -> UFuncB -> Bool)
-> (UFuncB -> UFuncB -> Bool) -> Eq UFuncB
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncB -> UFuncB -> Bool
$c/= :: UFuncB -> UFuncB -> Bool
== :: UFuncB -> UFuncB -> Bool
$c== :: UFuncB -> UFuncB -> Bool
Eq
data UFuncVV = NegV
deriving UFuncVV -> UFuncVV -> Bool
(UFuncVV -> UFuncVV -> Bool)
-> (UFuncVV -> UFuncVV -> Bool) -> Eq UFuncVV
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVV -> UFuncVV -> Bool
$c/= :: UFuncVV -> UFuncVV -> Bool
== :: UFuncVV -> UFuncVV -> Bool
$c== :: UFuncVV -> UFuncVV -> Bool
Eq
data UFuncVN = Norm | Dim
deriving UFuncVN -> UFuncVN -> Bool
(UFuncVN -> UFuncVN -> Bool)
-> (UFuncVN -> UFuncVN -> Bool) -> Eq UFuncVN
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: UFuncVN -> UFuncVN -> Bool
$c/= :: UFuncVN -> UFuncVN -> Bool
== :: UFuncVN -> UFuncVN -> Bool
$c== :: UFuncVN -> UFuncVN -> Bool
Eq
data StatBinOp = Defines
deriving StatBinOp -> StatBinOp -> Bool
(StatBinOp -> StatBinOp -> Bool)
-> (StatBinOp -> StatBinOp -> Bool) -> Eq StatBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: StatBinOp -> StatBinOp -> Bool
$c/= :: StatBinOp -> StatBinOp -> Bool
== :: StatBinOp -> StatBinOp -> Bool
$c== :: StatBinOp -> StatBinOp -> Bool
Eq
data SpaceBinOp = IsIn
deriving SpaceBinOp -> SpaceBinOp -> Bool
(SpaceBinOp -> SpaceBinOp -> Bool)
-> (SpaceBinOp -> SpaceBinOp -> Bool) -> Eq SpaceBinOp
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: SpaceBinOp -> SpaceBinOp -> Bool
$c/= :: SpaceBinOp -> SpaceBinOp -> Bool
== :: SpaceBinOp -> SpaceBinOp -> Bool
$c== :: SpaceBinOp -> SpaceBinOp -> Bool
Eq
data DerivType = Part | Total
deriving DerivType -> DerivType -> Bool
(DerivType -> DerivType -> Bool)
-> (DerivType -> DerivType -> Bool) -> Eq DerivType
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: DerivType -> DerivType -> Bool
$c/= :: DerivType -> DerivType -> Bool
== :: DerivType -> DerivType -> Bool
$c== :: DerivType -> DerivType -> Bool
Eq
data ModelExpr where
Lit :: Literal -> ModelExpr
Spc :: Space -> ModelExpr
AssocA :: AssocArithOper -> [ModelExpr] -> ModelExpr
AssocB :: AssocBoolOper -> [ModelExpr] -> ModelExpr
Deriv :: Integer -> DerivType -> ModelExpr -> UID -> ModelExpr
C :: UID -> ModelExpr
FCall :: UID -> [ModelExpr] -> [(UID, ModelExpr)] -> ModelExpr
Case :: Completeness -> [(ModelExpr, ModelExpr)] -> ModelExpr
Matrix :: [[ModelExpr]] -> ModelExpr
UnaryOp :: UFunc -> ModelExpr -> ModelExpr
UnaryOpB :: UFuncB -> ModelExpr -> ModelExpr
UnaryOpVV :: UFuncVV -> ModelExpr -> ModelExpr
UnaryOpVN :: UFuncVN -> ModelExpr -> ModelExpr
ArithBinaryOp :: ArithBinOp -> ModelExpr -> ModelExpr -> ModelExpr
BoolBinaryOp :: BoolBinOp -> ModelExpr -> ModelExpr -> ModelExpr
EqBinaryOp :: EqBinOp -> ModelExpr -> ModelExpr -> ModelExpr
LABinaryOp :: LABinOp -> ModelExpr -> ModelExpr -> ModelExpr
OrdBinaryOp :: OrdBinOp -> ModelExpr -> ModelExpr -> ModelExpr
SpaceBinaryOp :: SpaceBinOp -> ModelExpr -> ModelExpr -> ModelExpr
StatBinaryOp :: StatBinOp -> ModelExpr -> ModelExpr -> ModelExpr
VVVBinaryOp :: VVVBinOp -> ModelExpr -> ModelExpr -> ModelExpr
VVNBinaryOp :: VVNBinOp -> ModelExpr -> ModelExpr -> ModelExpr
Operator :: AssocArithOper -> DomainDesc t ModelExpr ModelExpr -> ModelExpr -> ModelExpr
RealI :: UID -> RealInterval ModelExpr ModelExpr -> ModelExpr
ForAll :: UID -> Space -> ModelExpr -> ModelExpr
type Variable = String
instance Eq ModelExpr where
Lit l :: Literal
l == :: ModelExpr -> ModelExpr -> Bool
== Lit r :: Literal
r = Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
r
AssocA o1 :: AssocArithOper
o1 l1 :: [ModelExpr]
l1 == AssocA o2 :: AssocArithOper
o2 l2 :: [ModelExpr]
l2 = AssocArithOper
o1 AssocArithOper -> AssocArithOper -> Bool
forall a. Eq a => a -> a -> Bool
== AssocArithOper
o2 Bool -> Bool -> Bool
&& [ModelExpr]
l1 [ModelExpr] -> [ModelExpr] -> Bool
forall a. Eq a => a -> a -> Bool
== [ModelExpr]
l2
AssocB o1 :: AssocBoolOper
o1 l1 :: [ModelExpr]
l1 == AssocB o2 :: AssocBoolOper
o2 l2 :: [ModelExpr]
l2 = AssocBoolOper
o1 AssocBoolOper -> AssocBoolOper -> Bool
forall a. Eq a => a -> a -> Bool
== AssocBoolOper
o2 Bool -> Bool -> Bool
&& [ModelExpr]
l1 [ModelExpr] -> [ModelExpr] -> Bool
forall a. Eq a => a -> a -> Bool
== [ModelExpr]
l2
Deriv a :: Integer
a t1 :: DerivType
t1 b :: ModelExpr
b c :: UID
c == Deriv d :: Integer
d t2 :: DerivType
t2 e :: ModelExpr
e f :: UID
f = Integer
a Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
d Bool -> Bool -> Bool
&& DerivType
t1 DerivType -> DerivType -> Bool
forall a. Eq a => a -> a -> Bool
== DerivType
t2 Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
e Bool -> Bool -> Bool
&& UID
c UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== UID
f
C a :: UID
a == C b :: UID
b = UID
a UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== UID
b
FCall a :: UID
a b :: [ModelExpr]
b c :: [(UID, ModelExpr)]
c == FCall d :: UID
d e :: [ModelExpr]
e f :: [(UID, ModelExpr)]
f = UID
a UID -> UID -> Bool
forall a. Eq a => a -> a -> Bool
== UID
d Bool -> Bool -> Bool
&& [ModelExpr]
b [ModelExpr] -> [ModelExpr] -> Bool
forall a. Eq a => a -> a -> Bool
== [ModelExpr]
e Bool -> Bool -> Bool
&& [(UID, ModelExpr)]
c [(UID, ModelExpr)] -> [(UID, ModelExpr)] -> Bool
forall a. Eq a => a -> a -> Bool
== [(UID, ModelExpr)]
f
Case a :: Completeness
a b :: [(ModelExpr, ModelExpr)]
b == Case c :: Completeness
c d :: [(ModelExpr, ModelExpr)]
d = Completeness
a Completeness -> Completeness -> Bool
forall a. Eq a => a -> a -> Bool
== Completeness
c Bool -> Bool -> Bool
&& [(ModelExpr, ModelExpr)]
b [(ModelExpr, ModelExpr)] -> [(ModelExpr, ModelExpr)] -> Bool
forall a. Eq a => a -> a -> Bool
== [(ModelExpr, ModelExpr)]
d
UnaryOp a :: UFunc
a b :: ModelExpr
b == UnaryOp c :: UFunc
c d :: ModelExpr
d = UFunc
a UFunc -> UFunc -> Bool
forall a. Eq a => a -> a -> Bool
== UFunc
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
UnaryOpB a :: UFuncB
a b :: ModelExpr
b == UnaryOpB c :: UFuncB
c d :: ModelExpr
d = UFuncB
a UFuncB -> UFuncB -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncB
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
UnaryOpVV a :: UFuncVV
a b :: ModelExpr
b == UnaryOpVV c :: UFuncVV
c d :: ModelExpr
d = UFuncVV
a UFuncVV -> UFuncVV -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncVV
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
UnaryOpVN a :: UFuncVN
a b :: ModelExpr
b == UnaryOpVN c :: UFuncVN
c d :: ModelExpr
d = UFuncVN
a UFuncVN -> UFuncVN -> Bool
forall a. Eq a => a -> a -> Bool
== UFuncVN
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
ArithBinaryOp o :: ArithBinOp
o a :: ModelExpr
a b :: ModelExpr
b == ArithBinaryOp p :: ArithBinOp
p c :: ModelExpr
c d :: ModelExpr
d = ArithBinOp
o ArithBinOp -> ArithBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== ArithBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
BoolBinaryOp o :: BoolBinOp
o a :: ModelExpr
a b :: ModelExpr
b == BoolBinaryOp p :: BoolBinOp
p c :: ModelExpr
c d :: ModelExpr
d = BoolBinOp
o BoolBinOp -> BoolBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== BoolBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
EqBinaryOp o :: EqBinOp
o a :: ModelExpr
a b :: ModelExpr
b == EqBinaryOp p :: EqBinOp
p c :: ModelExpr
c d :: ModelExpr
d = EqBinOp
o EqBinOp -> EqBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== EqBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
OrdBinaryOp o :: OrdBinOp
o a :: ModelExpr
a b :: ModelExpr
b == OrdBinaryOp p :: OrdBinOp
p c :: ModelExpr
c d :: ModelExpr
d = OrdBinOp
o OrdBinOp -> OrdBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== OrdBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
SpaceBinaryOp o :: SpaceBinOp
o a :: ModelExpr
a b :: ModelExpr
b == SpaceBinaryOp p :: SpaceBinOp
p c :: ModelExpr
c d :: ModelExpr
d = SpaceBinOp
o SpaceBinOp -> SpaceBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== SpaceBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
StatBinaryOp o :: StatBinOp
o a :: ModelExpr
a b :: ModelExpr
b == StatBinaryOp p :: StatBinOp
p c :: ModelExpr
c d :: ModelExpr
d = StatBinOp
o StatBinOp -> StatBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== StatBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
LABinaryOp o :: LABinOp
o a :: ModelExpr
a b :: ModelExpr
b == LABinaryOp p :: LABinOp
p c :: ModelExpr
c d :: ModelExpr
d = LABinOp
o LABinOp -> LABinOp -> Bool
forall a. Eq a => a -> a -> Bool
== LABinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
VVVBinaryOp o :: VVVBinOp
o a :: ModelExpr
a b :: ModelExpr
b == VVVBinaryOp p :: VVVBinOp
p c :: ModelExpr
c d :: ModelExpr
d = VVVBinOp
o VVVBinOp -> VVVBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== VVVBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
VVNBinaryOp o :: VVNBinOp
o a :: ModelExpr
a b :: ModelExpr
b == VVNBinaryOp p :: VVNBinOp
p c :: ModelExpr
c d :: ModelExpr
d = VVNBinOp
o VVNBinOp -> VVNBinOp -> Bool
forall a. Eq a => a -> a -> Bool
== VVNBinOp
p Bool -> Bool -> Bool
&& ModelExpr
a ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
c Bool -> Bool -> Bool
&& ModelExpr
b ModelExpr -> ModelExpr -> Bool
forall a. Eq a => a -> a -> Bool
== ModelExpr
d
_ == _ = Bool
False
instance LiteralC ModelExpr where
int :: Integer -> ModelExpr
int = Literal -> ModelExpr
Lit (Literal -> ModelExpr)
-> (Integer -> Literal) -> Integer -> ModelExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
int
str :: String -> ModelExpr
str = Literal -> ModelExpr
Lit (Literal -> ModelExpr)
-> (String -> Literal) -> String -> ModelExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> Literal
forall r. LiteralC r => String -> r
str
dbl :: Double -> ModelExpr
dbl = Literal -> ModelExpr
Lit (Literal -> ModelExpr)
-> (Double -> Literal) -> Double -> ModelExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Double -> Literal
forall r. LiteralC r => Double -> r
dbl
exactDbl :: Integer -> ModelExpr
exactDbl = Literal -> ModelExpr
Lit (Literal -> ModelExpr)
-> (Integer -> Literal) -> Integer -> ModelExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Integer -> Literal
forall r. LiteralC r => Integer -> r
exactDbl
perc :: Integer -> Integer -> ModelExpr
perc l :: Integer
l r :: Integer
r = Literal -> ModelExpr
Lit (Literal -> ModelExpr) -> Literal -> ModelExpr
forall a b. (a -> b) -> a -> b
$ Integer -> Integer -> Literal
forall r. LiteralC r => Integer -> Integer -> r
perc Integer
l Integer
r